V58XA System

Service Guide

Table of Contents

Chapter	1 Jumper Settings	
1.1	System Board Layout	1-1
1.2	System Board Settings	1-2
1.3	Processor Type Jumper Settings	1-3
1.4	Connector and Functions	1-4
1.5	DIMM Configurations	1-5

Chapter 2 Major Chipsets

2.1	M1531.	2-	-1
	2.1.1	Features2-	-2
	2.1.2	Pin Diagram2	-4
	2.1.3	Pin Descriptions2-	-5
	2.1.4	Numberical Pin List2-1	0
2.2	M1533.		9
	2.2.1	Features2-1	9
	2.2.2	Pin Diagram2-2	24
	2.2.3	Pin Descrptions2-2	25
	2.2.4	Numerical Pin List2-3	35
2.3	ATI 264	GT2-4	15
	2.3.1	Features2-4	15
		2.3.1.1 3D Accelerator2-4	15
		2.3.1.2 2D Accelerator	16
		2.3.1.3 Video Accelerator	16
		2.3.1.4 General Features2-4	17
	2.3.2	Block Diagrams2-4	18
	2.3.3	Pin Diagram2-4	19
	2.3.4	Signal Descriptions2-5	50
2.4	µPD481	350 SGRAM2-5	53
	2.4.1	Features2-5	53
	2.4.2	Block Diagram	54
	2.4.3	Pin Diagram2-5	55

	2.4.4	Signal Descriptions	2-56
2.5	SMC 370	C93xAPM	2-58
	2.5.1	Features	2-58
	2.5.2	Block Diagram	2-61
	2.5.3	Pin Diagram	2-62
	2.5.4	Signal Descriptions	2-63
	2.5.5	Multifunction Pins with GPI/O and Other Alternate Functions	2-66
	2.5.6	Buffer Type Descriptions	2-68

Appendix A: Schematics

1

Jumper Settings

1.1 System Board Layout

Note: The blackened pin of a jumper represents pin 1.

Figure 1 System Board Jumper and Connector Locations

1.2 System Board Jumper Settings

Table 1System Board Jumper Settings

Jumper/Settings	Function
JPX2 1-2 2-3*	BIOS logo setting Without IBM logo shown on screen during POST With IBM logo shown on screen during POST
System board PCB number: 97114-1	Core/bus frequency rate
JP4	P54C 6X86L P55C/6X86MX/K6
1-2, 4-5 1-2, 5-6 2-3, 5-6 2-3, 4-5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
System board PCB number: 97114-2 JPX3, JP4 2-3, (1-2, 4-5) 2-3, (1-2, 5-6) 2-3, (2-3, 5-6) 2-3, (2-3, 4-5) 1-2, (1-2, 5-6) 1-2, (2-3, 5-6)	Core/bus frequency rate P54C $6X86L$ P55C/6X86MX/K6 1.5 3.0 3.5 2.0 2.0 2.0 2.5 2.5 3.0 3.0 3.0 4.0 (not applicable to 55.38401.061) 4.5 (not applicable to 55.38401.061)
System board PCB number: 97114-1	
JP3, JP5, JP6 Closed β , Open α , 3-5 Closed β , Open α , 2-4 Closed β , Open α , 4-6 Closed β , Open α , 7-8 Open α , Closed β , 1-3 Open α , Closed β , 3-5	Processor core voltage 2.1V (reserved) 2.8V 2.9V 3.2V 3.3V 3.52V
System board PCB number: 97114-2 JP3, JP5, JP6 Closedβ, Openα, 3-5 Closedβ, Openα, 2-4 Closedβ, Openα, 4-6 Closedβ, Openα, 7-8 Openα, Closedβ, 1-3 Openα, Closedβ, 3-5	Processor core voltage 2.2V (2.1V for 55.38401.061) 2.8V 2.9V 3.2V 3.3V 3.52V
JP9 1-2 2-3	Password security Check password Bypass password

 $[\]ensuremath{\alpha}$: Disconnected, no jumper installed.

 $[\]beta$: Connections pins 1-2, 3-4, 5-6, 7-8.

^{*:} Default setting.

Jumper/Settings	Function
JP10, JP11	Host / PCI bus frequency
(1-3, 2-4), (1-3, 2-4)	60 /30 MHz
(3-5, 4-6), (1-3, 2-4)	66 /33 MHz
(1-3, 2-4), (3-5, 4-6)	75 /30 MHz
(3-5, 4-6), (3-5, 4-6)	83 /33 MHz

1.3 Processor Type Jumper Settings

Warning: You must check out the exact processor type before setting the processor type jumpers. The wrong processor type jumper setting may damage CPU, especially the single/dual voltage setting.

CPU	JP3	JPX3δ	JP4	JP5	JP6	JP10	JP11	
Pentium								
P-166	Openα	2-3	2-3, 5-6	Closed _β	1-3	3-4, 5-6	1-3, 2-4	
P-200	Openα	2-3	2-3, 4-5	Closed _β	1-3	3-4, 5-6	1-3, 2-4	
			Pen	tium MMX				
P-166	Closed _β	2-3	2-3, 5-6	Openα	2-4	3-5, 4-6	1-3, 2-4	
P-200	$Closed_{\beta}$	2-3	2-3, 4-5	Openα	2-4	3-5, 4-6	1-3, 2-4	
P-233	Closed _β	2-3	1-2, 4-5	Openα	2-4	3-5, 4-6	1-3, 2-4	
			Cyrix	/IBM 6x86	L			
PR166+	$Closed_{\beta}$	2-3	1-2, 5-6	Openα	2-4	3-5, 4-6	1-3, 2-4	
PR200+	$Closed_{\beta}$	2-3	1-2, 5-6	Openα	2-4	1-3, 2-4	3-5, 4-6	
			Cyrix/I	BM 6x86N	IX			
PR166+	$Closed_{\beta}$	2-3	1-2, 5-6	Openα	4-6	3-5, 4-6	1-3, 2-4	
			А	MD K6				
PR166	$Closed_{\beta}$	2-3	2-3, 5-6	Openα	4-6	3-5, 4-6	1-3, 2-4	
PR200	$Closed_{\beta}$	2-3	2-3, 4-5	Openα	4-6	3-5, 4-6	1-3, 2-4	
PR233	Closed _β	2-3	1-2, 4-5	Openα	7-8	3-5, 4-6	1-3, 2-4	
	AMD K6 (for PCB number: 97114-2)							
PR266	Closed _β	1-2	1-2, 5-6	Openα	3-5	3-5, 4-6	1-3, 2-4	
PR300	Closed _β	1-2	2-3, 5-6	Openα	3-5	3-5, 4-6	1-3, 2-4	

Table 2Processor Type Jumper Settings

 $[\]boldsymbol{\delta}$: JPX3 is an optional jumper, the system board may come without it.

 $[\]alpha$: Disconnected, no jumper installed.

β : Connections pins 1-2, 3-4, 5-6, 7-8.

1.4 Connector and Functions

Table 3System Board Connector Functions

Connector	Function	Connect to		
CN1	Lower: PS/2 keyboard connector Upper: PS/2 mouse connector	Keyboard Mouse		
CN2	Modem/voice-in connector	Modem card		
CN3	Universal serial bus (USB) connectors	USB devices		
CN4	Upper: Printer port Lower: Serial port Video port	Printer Serial device Monitor		
CN5	Upper: MIDI/game port Lower: Line-out, line-in, mic-in ports	Joystick Speaker, microphone		
CN6	CD audio input connector	CD-ROM drive		
CN8	ATI media connector (AMC)	Reserved		
CN9	Modem ring-in wake-up connector	Modem card		
CN10	Secondary IDE channel	CD-ROM drive		
CN12	Hard disk LED connector Connect the red wire to pin-1, white wire to pin-2, then leave pin-3, -4 as non-connected; or connect the red wire to pin-4, white wire to pin-3, then leave pin-1,-2 as non-connected.	Hard disk drive		
CN13	Primary IDE channel	Hard disk drive		
CN14	Power/suspend switch connector This connector has no directional concern.	Power/suspend switch		
CN15	Standby power connector	Power supply		
CN16	Diskette connector	Diskette drive		
CN17	Power LED connector. Connect the green wire to pin-12, white wire to pin-14.	Power LED		
CN19	System board power connector	Power supply		
FN1	Processor fan connector	CPU heat sink		

1.5 DIMM Configurations

DIMM1	DIMM2	Total Memory
8 MB		8 MB
16 MB		16 MB
32 MB		32 MB
	8 MB	8 MB
	16 MB	16 MB
	32 MB	32 MB
8 MB	8 MB	16 MB
8 MB	16 MB	24 MB
8 MB	32 MB	40 MB
16 MB	8 MB	24 MB
16 MB	16 MB	32 MB
16 MB	32 MB	48 MB
32 MB	8 MB	40 MB
32 MB	16 MB	48 MB
32 MB	32 MB	64 MB

Table 4DIMM Configurations

Major Chipsets

2.1. M1531

The Aladdin-IV is the succeeding generation chipset of Aladdin-III from Acer Labs. It maintains the best system architecture (two-chip solution) to achieve the best system performance with the lowest system cost (TTL-free). The Aladdin-IV consists of two BGA chips to give the 586-class system a complete solution with most up-to-date features and architecture for multimedia/ multithreading OS and software applications. It utilizes the modern BGA package to improve the AC characterization, resolves system bottleneck and makes the system manufacturing easier.

The M1531 includes:

- Higher CPU bus frequency (up to 83.3 MHz) interface for the incoming Cyrix M2 and AMD K6, PBSRAM and Memory Cache L2 controller
- Internal MESI tag bits (8K x 2) to reduce cost and enhance performance
- High-performance FPM/EDO/SDRAM DRAM controller
- PCI 2.1 compliant bus interface
- Smart deep buffer design for CPU-to-DRAM, CPU-to-PCI, and PCI-to-DRAM to achieve the best system performance
- Highly efficient PCI fair arbiter
- The most flexible 32/64-bit memory bus interface for the best DRAM upgrade ability and ECC/parity design to enhance the system reliability

With the concurrent bus design, PCI-to-PCI access can run concurrently with CPU-to-L2 and CPUto-DRAM access, while PCI-to-DRAM access can run concurrently with CPU-to-L2 access. The M1531 also supports the snoop ahead feature to achieve the PCI master full-bandwidth access (133 MB) and provides the enhanced power management features including ACPI support, suspend DRAM refresh, and internal chip power control to support the Microsoft's On Now technology OS.

The M1533 offers the best power management system solution. It integrates ACPI support, deep green function, two-channel dedicated Ultra-33 IDE master controller, two-port USB controller, SMBus controller, and PS2 keyboard/mouse controller.

The M1543 provides the best desktop system solution. It integrates ACPI support, green function, two-channel dedicated Ultra-33 IDE Master controller, two-port USB controller, SMBus controller, PS/2 keyboard/mouse controller and the Super I/O (Floppy Disk Controller, two serial port/one parallel port) support.

The Aladdin-IV gives a highly-integrated system solution and a most up-to-date architecture to provide the best cost/performance system solution for desktop and notebook vendors.

2

2.1.1 Features

- Supports all Intel/Cyrix/AMD/TI/IBM 586 processors. Host bus at 83.3, 75, 66, 60 and 50 MHz at 3.3V/2.5V
- Supports Linear Wrap mode for Cyrix M1 and M2
 - Write-Allocation feature for K6
 - Pseudo-Synchronous PCI bus access (CPU bus: 75 MHz - PCI bus: 30 MHz, CPU bus: 83.3 MHz - PCI bus: 33 MHz)
- Supports Pipelined-burst SRAM/Memory Cache
 - Direct mapped, 256 KB/512 KB/1 MB
 - Write-Back/Dynamic-Write-Back cache policy
 - Built-in 8K x 2 bit SRAM for MESI protocol to reduce cost and enhance performance
 - Cacheable memory up to 64 MB with 8-bit Tag SRAM
 - Cacheable memory up to 512 MB with 11-bit Tag SRAM
 - 3-1-1-1-1-1 for Pipelined-burst SRAM/Memory Cache at back-to-back burst read and write cycles
 - 3.3V/5V SRAMs for Tag address
 - CPU single-read cycle L2 allocation

Supports FPM/EDO/SDRAM DRAMs

- 8 RAS lines up to 1 GB support
- 64-bit data path to memory
- Symmetrical/Asymmetrical DRAMs
- 3.3V or 5V DRAMs
- Duplicated MA[1:0] driving pins for burst access
- No buffer needed for RASJ and CASJ and MA[1:0]
- CBR and RAS-only refresh for FPM
- CBR and RAS-only refresh and Extended refresh and self refresh for EDO
- CBR and Self refresh for SDRAM
- 16 Qword deep merging buffer for 3-1-1-1-1-1 posted-write cycle to enhance high-speed CPU burst access
- 6-3-3-3-3-3 for back-to-back FPM read page hit, 5-2-2-2-2-2 for back-to-back EDO read page hit, 6-1-1-1-2-1-1 for back-to-back SDRAM read page hit, 2-2-2-2 for retired data for posted write on FPM and EDO page-hit, x-1-1-1 for retired data for posted write SDRAM page-hit
- Enhanced DRAM page miss performance
- Supports 64 Mbit (16M x 4, 8M x 8, 4M x 16) technology of DRAMs

- Supports Programmable-strength RAS/CAS/ MWEJ/MA buffers
- Supports Error Checking and Correction (ECC) and Parity for DRAM
- Supports the most flexible six 32-bit populated banks of DRAM for easy DRAM upgrade
- Supports SIMM and DIMM
- Synchronous/Pseudo Synchronous 25/30/33MHz 3.3V/5V tolerance PCI interface
- Concurrent PCI architecture
- PCI bus arbiter: five PCI masters and M1533/ M1543 (ISA Bridge) supported
- 6 DWords for CPU-to-PCI memory write posted buffers
- Converts back-to-back CPU to PCI memory write to PCI burst cycle
- 38/22 Dwords for PCI-to-DRAM Write-posted/ Read-prefetching buffers
- PCI-to-DRAM up to 133 MB/sec bandwidth (even when L1/L2 write-back)
- L1/L2 pipelined-snoop ahead for PCI-to-DRAM cycle
- Supports PCI mechanism #1 only
- Complies with PCI spec. 2.1 (N(32/16/8)+8 rule, passive release, fair arbitration)
- Enhanced performance for Memory-Read-Line, Memory-Read-Multiple and Memorywrite- Invalidate PCI commands
- Enhanced Power Management
 - ACPI support
 - PCI bus CLKRUN function
 - Dynamic Clock Stop
 - Power-on Suspend
 - Suspend to Disk
 - Suspend to DRAM
 - Self refresh during Suspend
- 328-pin (27mm x 27mm) BGA package

2.1.2 Pin Diagram

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A	NC	PHLDAJ	AD3	AD6	AD8	AD12	PAR	TRDYJ	AD17	AD22	AD25	AD30	REQJ3	GNTJ2	GNTJ3	MPD2	MPD0	MD61	MD29	MD62
в	BEJ0	PHLD	JAD2	AD5	AD7	AD11	CBEJ1	DEVSE	LJ AD16	AD21	AD24	AD29	REQJ2	GNTJ1	MPD5	MPD'	1 MD63	8 MD27	' MD60	MD28
c	BEJ3	BEJ2	BEJ1	AD4	CBEJ0	AD10	AD15	STOPJ	CBEJ2	AD20	CBEJ3	AD28	REQJ1	GNT0J	MPD4	MD30) MD25	MD58	8 MD26	MD59
D	BEJ6	BEJ5	BEJ4	AD0	AD1	AD9	AD14	LOCKJ	FRAMEJ	AD19	AD23	AD27	REQJ0	MPD7	MPD3	MD55	MD23	MD56	MD24	MD57
E	DCJ	HITMJ	EADSJ	BEJ7	RSTJ	PCIMRQJ	AD13	SERRJ	IRDYJ	AD18	PCLKIN	AD26	AD31	MPD6	MD31	MD20	MD53	MD21	MD54	MD22
F	BRDYJ	BOFFJ	SMIAC	TJ HLOCKJ	ADSJ	VCC_B								VCC_C	VCC_C	MD50	MD18	MD51	MD19	MD52
G	HD63	CACHEJ	AHOLD	KENJ	NAJ	VCC_A				M15	531				VCC_C	MD15	5 MD48	MD16	6 MD49	MD17
н	HD60	HD61	HD62	WRJ	MIOJ			GND	GND	GND	GND	GND	GND			MD45	5 MD13	MD46	6 MD14	MD47
J	HD55	HD56	HD57	HD58	HD59			GND	GND	GND	GND	GND	GND			MD10	MD43	MD11	MD44	MD12
ĸ	HD51	HD52	HD53	HD54	HCL	KIN		GND	GND	GND	GND	GND	GND			MD40	MD8	MD41	MD9	MD42
L	HD46	HD47	HD48	HD49	HD50			GND	GND	GND	GND	GND	GND			MD5	MD38	MD6	MD39	MD7
м	HD41	HD42	HD43	HD44	HD45			GND	GND	GND	GND	GND	GND			MD35	5 MD3	MD36	MD4	MD37
N	HD36	HD37	HD38	HD39	HD40			GND	GND	GND	GND	GND	GND		VDD5S	REQJ4	GNTJ4	MD1	MD34	MD2
Р	HD31	HD32	HD33	HD34	HD35	VCC_A								1	VCC_C	32K	SUSPEND	MD32	MD0	MD33
R	HD26	HD27	HD28	HD29	HD30	VDD5	VCC_A							VCC_B	VCC_C	RASJ6	RASJ7	CASJ2	CASJ7	CASJ3
Т	HD21	HD22	HD23	HD24	HD25	HD0	A12	A5	GWEJ	COEJ	CADVJ	TWEJ	MAA0	MAA	1TIO8	TIO9	TIO10	RASJ1	RASJ0	CASJ6
U	HD16	HD17	HD18	HD19	HD20	HD1	A13	A8	CCSJ	BWEJ	CADSJ	TIO0	TIO1	MAB0	MAB1	MA5	MWEJ	RASJ4	RASJ3	RASJ2
v	HD15	HD14	HD13	HD6	HD3	A17	A14	A10	A4	A29	A25	A24	A23	T102	MA2	MA4	MA8	CASJ5	CASJ1	RASJ5
w	HD12	HD11	HD10	HD5	HD2	A18	A15	A11	A7	A30	A31	A22	A21	T104	TIO6	MA3	MA7	MA10	CASJO	CASJ4
Y	HD9	HD8	HD7	HD4	A20	A19	A16	A9	A6	A3	A28	A26	A27	тюз	TIO5	TIO7	MA6	MA9	MA11	NC

TOP VIEW

Figure 2-1 M1531 Pin Diagram

2.1.3 Pin Descriptions

Table 2- 1	M1531 Signal Descriptions
------------	---------------------------

Signal	Туре	Description					
Host Interface	3.3V/2.5V						
A[31:3]	I/O Group A	Host Address Bus Lines. A[31:3] have two functions. As inputs, along with the byte enable signals, these pins serve as the address lines of the host address bus which define the physical area of memory or I/O being accessed. As outputs, the M1531 drives them during inquiry cycles on behalf of PCI masters.					
BEJ[7:0]	l Group A	Byte Enables. These are the byte enable signals for the data bus. BEJ[7] applies to the most significant byte and BEJ[0] applies to the least significant byte. They determine which byte of data must be written to the memory, or are requested by the CPU. In local memory read and line-fill cycles, these inputs are ignored by the M1531.					
ADSJ	l Group A	Address Strobe. The CPU will start a new cycle by asserting ADSJ first. The M1531 will not precede to execute a cycle until it detects ADSJ active.					
BRDYJ	O Group A	Burst Ready. The assertion of BRDYJ means the current transaction is complete. The CPU terminates the cycle by receiving 1 or 4 active BRDYJs depending on different types of cycles.					
NAJ	O Group A	Next Address. This signal is asserted by the M1531 to inform the CPU that pipelined cycles are ready for execution.					
AHOLD	O Group A	CPU AHold Request Output. It connects to the input of CPU's AHOLD pin and is actively driven for inquiry cycles.					
EADSJ	O Group A	External Address Strobe. This signal is connected to the CPU EADSJ pin. During PCI cycles, the M1531 asserts this signal to proceed snooping.					
BOFFJ	O Group A	CPU Back-Off. If BOFFJ is sampled active, CPU will float all its buses in the next clock. M1531 asserts this signal to request CPU floating all its output buses.					
HITMJ	l Group A	Primary Cache Hit and Modified. When snooped, the CPU asserts HITMJ to indicate that a hit to a modified line in the data cache occurred. It is used to prohibit another bus master from accessing the data of this modified line in the memory until the line is completely written back.					
MIOJ	l Group A	Host Memory or I/O. This bus definition pin indicates the current bus cycle is either memory or input/ output.					
DCJ	l Group A	Host Data or Code. This bus definition pin is used to distinguish data access cycles from code access cycles.					
WRJ	l Group A	Host Write or Read. When WRJ is driven high, it indicates the current cycle is a write. Inversely, if WRJ is driven low, a read cycle is performed.					
HLOCKJ	l Group A	Host Lock. When HLOCKJ is asserted by the CPU, the M1531 will recognize the CPU is locking the current cycles.					
CACHEJ	l Group A	Host Cacheable. This pin is used by the CPU to indicate the system that CPU wants to perform a line fill cycle or a burst write back cycle. If it is driven inactive in a read cycle, the CPU will not cache the returned data, regardless of the state of KENJ.					
Host Interface	3.3V/2.5V						

Table 2- 1	M1531 Signal Descriptions
	Miller Cigilal Decemptione

Signal	Туре	Description
KENJ/INV	O Group A	Cache Enable Output. This signal is connected to the CPU's KENJ and INV pins. KENJ is used to notify the CPU whether the address of the current transaction is cacheable. INV is used during L1 snoop cycles. The M1531 drives this signal high (low) during the EADSJ assertion of a PCI master write (read) snoop cycle.
SMIACTJ	l Group A	SMM Interrupt Active. This signal is asserted by the CPU to inform the M1531 that SMM mode is being entered.
HD[63:0]	I/O Group A	Host Data Bus Lines. These signals are connected to the CPU's data bus. HD[63] applies to the most significant bit and HD[0] applies to the least significant bit.
MPD[7:0]	I/O Group C	DRAM Parity /ECC check bits. These are the 8 bits for parities/ECC check bits over DRAM data bus. MPD[7] applies to the most significant bit and MPD[0] applies to the least significant bit.
RASJ[7] / SRASJ[0]	O Group C	Row Address Strobe 7, (FPM/EDO) of DRAM row 7. SDRAM Row Address Strobe (SDRAM) copy 0. It connects to SDRAM RASJ. This is a multifunction pin and determined by Index-5Ch bit0.
RASJ[6] / SCASJ[0]	O Group C	Row Address Strobe 6, (FPM/EDO) of DRAM row 6. SDRAM Column address strobe (SDRAM) copy 0. It connects to SDRAM CASJ. This is a multifunction pin and determined by Index-5Ch bit0.
RASJ[5:0]	O Group C	Row Address Strobes. These signals are used to drive the corresponding RASJs of FPM/EDO DRAMs. In SDRAM, they are used to drive the corresponding SDRAM CSJs.
CASJ[7:0] / DQM[7:0]	O Group C	Column Address Strobes or Synchronous DRAM Input/Output Data Mask. These CAS signals should be connected to the corresponding CASJs of each bank of DRAM. The value of CASJs equals that of HBEJs for write cycles. During DRAM read cycles, all of CASJs will be active. In SDRAM, these pins act as synchronized output enables during a read cycle and the byte mask during write cycle, these pins are connected to SDRAM DQM[7:0].
MA[11:2]	O Group C	DRAM Address Lines. These signals are the address lines[11:2] of all DRAMs. The M1531 supports DRAM types ranging from 256K to 64Mbits.
MAA[1:0]	O Group C	Memory Address copy A for [1:0]. These signals are the address lines[1:0] copy 0 of all DRAMs.
MAB[1:0]	O Group C	Memory Address copy B for [1:0]. These signals are the address lines[1:0] copy 1 of all DRAMs.
MWEJ[0]	O Group C	DRAM Write Enable. This is the DRAM write enable pin and behaves according to the early-write mechanism, i.e., it activates before the CASJs do. For refresh cycles, it will remain deasserted.
MD[63:0]	I/O Group C	Memory Data. These pins are connected to DRAM's data bits. MD[63] applies to the most significant bit and MD[0] applies to the least significant bit.
Host Interface	e 3.3V/2.5V	
CLKEN[0]/ REQJ[4]	I/O Group C	SDRAM Clock Enable Copy 0 or PCI Master Request. This signal is used as SDRAM clock enable copy 0 to do self refresh during suspend. It can also be used as bus request signal of the fifth PCI master. This function is controlled by Index -5Dh bit 1.

Signal	Туре	Description
CLKEN[1]/ GNTJ[4]	O Group C	SDRAM Clock Enable Copy 1 or PCI Master Grant. This signal is used as SDRAM clock enable copy 1 to do self refresh during suspend. It can also be used as grant signal of the fifth PCI master. This function is controlled by Index -5Dh bit 1.
Secondary Ca	ache Interfa	ce 3.3V/2.5V Tolerance
CADVJ	O Group A	Synchronous SRAM Advance. This signal will make PBSRAM/Memory Cache internal burst address counter advance.
CADSJ	O Group A	Synchronous SRAM Address Strobe. This signal connects to PBSRAM/ Memory Cache ADSCJ.
CCSJ	O Group A	Synchronous SRAM Chip Select. This signal connects to PBSRAM/Memory Cache CE1J to mask ADSPJ and enable ADSCJ sampling.
GWEJ	O Group A	Synchronous SRAM Global Write Enable. This signal will write all the byte lanes data into PBSRAM/Memory Cache.
COEJ	O Group A	Synchronous SRAM Output Enable. This signal will enable the data output driving of PBSRAM/Memory Cache.
BWEJ	O Group A	Synchronous SRAM Byte-Write Enable. This signal connects to byte write enable of PBSRAM/Memory Cache.
TIO[10]/ MWEJ[1]/ MKREFRQJ	I/O Group C	SRAM Tag[10] or another copy of MWEJ or DRAM Cache MKREFRQJ. This pin is used for multifunction. It can be SRAM tag address bit 10, or another copy of MWEJ connected to DRAM, or MKREFRQJ connected to DRAM Cache. Refer to Register Index-41h bit 6, bit3 and bit0 description.
TIO[9]/ SRASJ[1]	I/O Group C	SRAM Tag[9] or Synchronous DRAM (SDRAM) RAS copy 1. This pin is used for multifunction. It can be SRAM tag address bit 9, or another copy of SRASJ connected to SDRAM. Refer to Register Index-41h bit3 and bit0 description.
TIO[8]/ SCASJ[1]	I/O Group C	SRAM Tag[8] or Synchronous DRAM (SDRAM) CAS copy 1. This pin is used for multifunction. It can be SRAM tag address bit 8, or another copy of SCASJ connected to SDRAM. Refer to Register Index-41h bit3 and bit0 description.
TIO[7:0]	I/O Group B	SRAM Tag[7:0]. This pin contains the L2 tag address for 256-KB L2 caches. TIO[6:0] contain the L2 tag address and TIO7 contains the L2 cache valid bit for 512-KB caches. TIO[5:0] contain L2 tag address, TIO7 contains L2 cache valid bit and TIO6 contains the L2 cache dirty bit for 1-MB cache. Refer to index-41h cache configuration table.
TAGWEJ	O Group B	Tag Write Enable. This signal, when asserted, will write into the external tag new state and tag addresses.
PCI Interface	3.3V/2.5V	Tolerance
AD[31:0]	I/O Group B	PCI Address and Data Bus Lines. These lines are connected to the PCI bus. AD[31:0] contain the information of address or data for PCI transactions.
CBEJ[3:0]	I/O Group B	PCI Bus Command and Byte Enables. Bus commands and byte enables are multiplexed in these lines for address and data phases, respectively.

Table 2-1M1531 Signal Descriptions

Signal	Туре	Description	
FRAMEJ	I/O Group B	Cycle Frame of PCI Buses. This indicates the beginning and duration of a PCI access. It will be as an output driven by M1531 on behalf of CPU, or as an input during PCI master access.	
DEVSELJ	I/O Group B	Device Select. When the target device has decoded the address as its own cycle, it will assert DEVSELJ.	
IRDYJ	I/O Group B	Initiator Ready. This signal indicates the initiator is ready to complete the current data phase of transaction.	
TRDYJ	I/O Group B	Target Ready. This pin indicates the target is ready to complete the current data phase of transaction.	
STOPJ	I/O Group B	Stop. This signal indicates the target is requesting the master to stop the current transaction.	
LOCKJ	I/O Group B	Lock Resource Signal. This pin indicates the PCI master or the bridge intends to do exclusive transfers.	
REQJ[3:0]	l Group B	Bus Request signals of PCI Masters. When asserted, it means the PCI Master is requesting the PCI bus ownership from the arbiter.	
GNTJ[3:0]	O Group B	Grant signals to PCI Masters. When asserted by the arbiter, it means the PCI master has been legally granted to own the PCI bus.	
PHLDJ	l Group B	PCI bus Hold Request. This active low signal is a request from M1533/M1543 for the PCI bus.	
PHLDAJ	O Group B	PCI bus Hold Acknowledge. This active low signal grants PCI bus to M1533/M1543.	
PAR	I/O Group B	Parity bit of PCI bus. It is the even parity bit across PAD[31:0] and CBEJ[3:0].	
SERRJ/ CLKRUNJ	I/O Group B	System Error or PCI Clock RUN. If the M1531 detects parity errors in DRAMs, it will assert SERRJ to notify the system. As CLKRUNJ, this signal will connect to M1533 CLKRUNJ to start, or maintain the PCI CLOCK. It is a multifunction pin and determined by Index-77h bit0.	
Clock, Reset,	and Suspe	nd	
HCLKIN	l Group A	CPU bus Clock Input. This signal is used by all of the M1531 logic that is in the Host clock domain.	
RSTJ	I Group B	System Reset. This pin, when asserted, resets the M1531 state machine, and sets the register bits to their default values.	
Clock, Reset,	and Susper	nd	
PCICLK	l Group B	PCI bus Clock Input. This signal is used by all of the M1531 logic that is in the PCI clock domain.	
PCIMRQJ	O Group B	Total PCI Request. This signal is used to notify M1533/M1543 that there is PCI master requesting PCI bus.	
SUSPENDJ	l Group C	Suspend. When actively sampled, the M1531 will enter the I/O suspend mode. This signal should be pulled high when the suspend feature is disabled.	

Table 2- 1	M1531 Signal Descriptions
------------	---------------------------

Signal	Туре	Description
OSC32KO	l Group C	The refresh reference clock of frequency 32 KHz during suspend mode. This signal should be pulled to a fixed value when the suspend feature is disabled.
Power Pins		
VCC_A	Ρ	Vcc 3.3V or 2.5V Power for Group A. This power is used for CPU interface and L2 control signals. If this power connects to 3.3V, the relative signals will output 3.3V and accept 3.3V input. If this power connects to 2.5V, the relative signals will output 2.5V and accept 2.5V input.
VCC_B	Ρ	Vcc 3.3V Power for Group B. This power is used for PCI interface and Tag signals. It must connect to 3.3V. The relative signals will output 3.3V and 5V input tolerance.
VCC_C	Ρ	Vcc 3.3V Power for Group C. This power is used for DRAM interface signals during normal operation and suspend refresh. It must connect to 3.3V. The relative signals will output 3.3V and 5V input tolerance.
VDD_5	Р	Vcc 5.0V Power for Group A and Group B. This pin supplies the 5V input tolerance circuit and the core power for the internal circuit except the suspend circuit.
VDD_5S	Р	Vcc 5.0V Power for Group C. This pin supplies the 5V input tolerance circuit and the core power for the internal suspend circuit.
Vss or Gnd	Р	Ground

Table 2-1M1531 Signal Descriptions

2.1.4 Numerical Pin List

Pin No.	Pin Name	Pin Type
A1		-
A2	PHLDAJ	0
A3	AD3	I/O
A4	AD6	I/O
A5	AD8	I/O
A6	AD12	I/O
A7	PAR	I/O
A8	TRDYJ	I/O
A9	AD17	I/O
A10	AD22	I/O
A11	AD25	I/O
A12	AD30	I/O
A13	REQJ3	I
A14	GNTJ2	0
A15	GNTJ3	0
A16	MPD2	I/O
A17	MPD0	I/O
A18	MD61	I/O
A19	MD29	I/O
A20	MD62	I/O
B1	BEJ0	I
B2	PHLDJ	I
B3	AD2	I/O
B4	AD5	I/O
B5	AD7	I/O
B6	AD11	I/O
B7	CBEJ1	I/O
B8	DEVSELJ	I/O
B9	AD16	I/O
B10	AD21	I/O
B11	AD24	I/O
B12	AD29	I/O
B13	REQJ2	I
B14	GNTJ1	0
B15	MPD5	I/O
B16	MPD1	I/O
B17	MD63	I/O
B18	MD27	I/O

B19	MD60	I/O
B20	MD28	I/O
C1	BEJ3	I
C2	BEJ2	I
C3	BEJ1	I
C4	AD4	I/O
C5	CBEJ0	I/O
C6	AD10	I/O
C7	AD15	I/O
C8	STOPJ	I/O
C9	CBEJ2	I/O
C10	AD20	I/O
C11	CBEJ3	I/O
C12	AD28	I/O
C13	REQJ1	I
C14	GNTJ0	0
C15	MPD4	I/O
C16	MD30	I/O
C17	MD25	I/O
C18	MD58	I/O
C19	MD26	I/O
C20	MD59	I/O
D1	BEJ6	I
D2	BEJ5	I
D3	BEJ4	I
D4	AD0	I/O
D5	AD1	I/O
D6	AD9	I/O
D7	AD14	I/O
D8	LOCKJ	I/O
D9	FRAMEJ	I/O
D10	AD19	I/O
D11	AD23	I/O
D12	AD27	I/O
D13	REQJ0	1
D14	MPD7	I/O
D15	MPD3	I/O
D16	MD55	I/O
D17	MD23	I/O
D18	MD56	I/O
D19	MD24	I/O

D20	MD57	I/O
E1	DCJ	1
E2	HITMJ	I
E3	EADSJ	0
E4	BEJ7	I
E5	RSTJ	I
E6	PCIMRQJ	0
E7	AD13	I/O
E8	SERRJ	I/O
E9	IRDYJ	I/O
E10	AD18	I/O
E11	PCLKIN	I
E12	AD26	I/O
E13	AD31	I/O
E14	MPD6	I/O
E15	MD31	I/O
E16	MD20	I/O
E17	MD53	I/O
E18	MD21	I/O
E19	MD54	I/O
E20	MD22	I/O
F1	BRDYJ	0
F2	BOFFJ	0
F3	SMIACTJ	I
F4	HLOCKJ	I
F5	ADSJ	I
F6	VCC_B	Р
F14	VCC_C	Р
F15	VCC_C	Р
F16	MD50	I/O
F17	MD18	I/O
F18	MD51	I/O
F19	MD19	I/O
F20	MD52	I/O
G1	HD63	I/O
G2	CACHEJ	Ι
G3	AHOLD	0
G4	KENJ	0
G5	NAJ	0
G6	VCC_A	Р
G15	VCC_C	Р

G16	MD15	I/O
G17	MD48	I/O
G18	MD16	I/O
G19	MD49	I/O
G20	MD17	I/O
H1	HD60	I/O
H2	HD61	I/O
H3	HD62	I/O
H4	WRJ	I
H5	MIOJ	I
H8	GND	Р
H9	GND	Р
H10	GND	Р
H11	GND	Р
H12	GND	Р
H13	GND	Р
H16	MD45	I/O
H17	MD13	I/O
H18	MD46	I/O
H19	MD14	I/O
H20	MD47	I/O
J1	HD55	I/O
J2	HD56	I/O
J3	HD57	I/O
J4	HD58	I/O
J5	HD59	I/O
J8	GND	Р
J9	GND	Р
J10	GND	Р
J11	GND	Р
J12	GND	Р
J13	GND	Р
J16	MD10	I/O
J17	MD43	I/O
J18	MD11	I/O
J19	MD44	I/O
J20	MD12	I/O
K1	HD51	I/O
K2	HD52	I/O
K3	HD53	I/O
K4	HD54	I/O

K5	HCLKIN	1
K8	GND	P
K9	GND	Р
K10	GND	P
K11	GND	P
K12	GND	Р
K13	GND	Р
K16	MD40	I/O
K17	MD8	1/O
K18	MD41	1/O
K19		1/O
K20	MD42	1/O
11		1/0
12	HD47	./ C
13		1/0
		1/0
15		1/0
		I/O D
		Г
L9		Г
	GND	
L11	GND	P
L12	GND	P
L13	GND	P
L16	MD5	1/0
L17	MD38	I/O
L18	MD6	I/O
L19	MD39	I/O
L20	MD7	I/O
M1	HD41	I/O
M2	HD42	I/O
M3	HD43	I/O
M4	HD44	I/O
M5	HD45	I/O
M8	GND	Р
M9	GND	Р
M10	GND	Р
M11	GND	Р
M12	GND	Р
M13	GND	Р
M16	MD35	I/O
M17	MD3	I/O

M18	MD36	I/O
M19	MD4	I/O
M20	MD37	I/O
N1	HD36	I/O
N2	HD37	I/O
N3	HD38	I/O
N4	HD39	I/O
N5	HD40	I/O
N8	GND	Р
N9	GND	Р
N10	GND	Р
N11	GND	Р
N12	GND	P
N13	GND	Р
N15	VDD5S	Р
N16	REQJ4	I/O
N17	GNTJ4	0
N18	MD1	I/O
N19	MD34	I/O
N20	MD2	I/O
P1	HD31	I/O
P2	HD32	I/O
P3	HD33	I/O
P4	HD34	I/O
P5	HD35	I/O
P6	VCC_A	Р
P15	VCC_C	Р
P16	32K	I
P17	SUSPEN DJ	I
P18	MD32	I/O
P19	MD0	I/O
P20	MD33	I/O
R1	HD26	I/O
R2	HD27	I/O
R3	HD28	I/O
R4	HD29	I/O
R5	HD30	I/O
R6	VDD5	Р
R7	VCC_A	Р
R14	VCC_B	Р
R15	VCC_C	Р

R16	RASJ6	0
R17	RASJ7	0
R18	CASJ2	0
R19	CASJ7	0
R20	CASJ3	0
T1	HD21	I/O
T2	HD22	I/O
Т3	HD23	I/O
T4	HD24	I/O
T5	HD25	I/O
T6	HD0	I/O
T7	A12	I/O
Т8	A5	I/O
Т9	GWEJ	0
T10	COEJ	0
T11	CADVJ	0
T12	TWEJ	0
T13	MAA0	0
T14	MAA1	0
T15	TIO8	I/O
T16	TIO9	I/O
T17	TIO10	I/O
T18	RASJ1	0
T19	RASJ0	0
T20	CASJ6	0
U1	HD16	I/O
U2	HD17	I/O
U3	HD18	I/O
U4	HD19	I/O
U5	HD20	I/O
U6	HD1	I/O
U7	A13	I/O
U8	A8	I/O
U9	CCSJ	0
U10	BWEJ	0
U11	CADSJ	0
U12	TIO0	I/O
U13	TIO1	I/O
U14	MAB0	0
U15	MAB1	0
U16	MA5	0

U17	MWEJ	I/O				
U18	RASJ4	0				
U19	RASJ3	0				
U20	RASJ2	0				
V1	HD15	I/O				
V2	HD14	I/O				
V3	HD13	I/O				
V4	HD6	I/O				
V5	HD3	I/O				
V6	A17	I/O				
V7	A14	I/O				
V8	A10	I/O				
V9	A4	I/O				
V10	A29	I/O				
V11	A25	I/O				
V12	A24	I/O				
V13 7	A23	I/O				
V14	TIO2	I/O				
V15	MA2	0				
V16	MA4	0				
V17	MA8	0				
V18	CASJ5	0				
V19	CASJ1	0				
V20	RASJ5	0				
W1	HD12	I/O				
W2	HD11	I/O				
W3	HD10	I/O				
W4	HD5	I/O				
W5	HD2	I/O				
W6	A18	I/O				
W7	A15	I/O				
W8	A11	I/O				
W9	A7	I/O				
W1 0	A30	I/O				
W1 1	A31	I/O				
W1 2	A22	I/O				
W1 3	A21	I/O				

W1 4	TIO4	I/O				
W1 5	TIO6	I/O				
W1 6	MA3	0				
W1 7	MA7	0				
W1 8	MA10	0				
W1 9	CASJ0	0				
W2 0	CASJ4	0				
Y1	HD9	I/O				
Y2	HD8	I/O				
Y3	HD7	I/O				
Y4	HD4	I/O				
Y5	A20	I/O				
Y6	A19	I/O				
Y7	A16	I/O				
Y8	A9	I/O				
Y9	A6	I/O				
Y10	A3	I/O				
Y11	A28	I/O				
Y12	A26	I/O				
Y13	A27	I/O				
Y14	TIO3	I/O				
Y15	TIO5	I/O				
Y16	TIO7	I/O				
Y17	MA6	0				
Y18	MA9	0				
Y19	MA11	0				
Y20						

2.2. M1533

The M1533 is a bridge between PCI and ISA bus, providing full PCI and ISA compatible functions. This chip has Integrated System Peripherals (ISP) (2 x 82C59 and serial interrupt, 1 x 82C54), advanced features (Type F and Distributed DMA) in the DMA controller (2 x 82C54), PS/2 keyboard/mouse controller, two-channel dedicated IDE master controller with Ultra-33 specification, System Management Bus (SMB), and two OpenHCI 1.0a USB ports. The ACPI (Advanced Configuration and Power Interface) and PCI 2.1 (Delayed Transaction & Passive Release) specification have also been implemented. Furthermore, this chip supports the Advanced Programmable Interrupt Controller (APIC) interface for Multiple-Processors system.

The M1533 also supports the deep flexible green function for the best green system. It can connect to the ALi Pentium North Bridge (M1521/M1531/M1541) and ALi Pentium Pro North Bridge (M1615) to provide the best system solution. One eight-byte bidirectional line buffer is provided for ISA/DMA master memory read/writes; one 32-bit wide posted write buffer is provided for PCI memory write & I/O write (for audio) cycles to the ISA bus, to provide a PCI to ISA IRQ routing table, and level-to-edge trigger transfer.

The chip provides two extra IRQ lines and one programmable chip select for motherboard Plug-and-Play functions. The interrupt lines can be routed to any of the available ISA interrupts. The on-chip IDE controller supports two separate IDE connectors for up to four IDE devices providing an interface for IDE hard disks and CD ROMs. The Ultra 33 specification (that supports the 33 MB/second transfer rate) has been implemented at this IDE controller. The ATA bus pins and the buffer (read ahead and posted write) are all dedicated for separate channel to improve the performance of IDE master.

The M1533 supports Super Green function for Intel and Intel compatible CPUs. It implements SMI or SCI (System Controller Interrupt) to meet the ACPI specification. It also meets the requirement for OnNow design initiative. It also features powerful power management for power saving including On, Standby, Sleeping, SoftOff, and Mechanical Off states. To control the CPU power consumption, it provides CPU clock control (STPCLKJ). The STPCLKJ can be active (low) or inactive (high) in turn by throttling control. In addition, the M1533 offers the most flexible system clock design. It can be programmed to stop the CPU Clock, PCI Clock, the Clock cell, or to reduce the Clock frequency. The PBSRAM (Pipelined-burst SRAM) doze mode is also supported.

The M1533 is includes a PS/2 keyboard/mouse controller, SMBus, two OpenHCI 1.0a USB ports, and the dedicated GPIO (General Purpose Input/Output) pins. These components enable the chip to implement the best green and cost/performance system.

2.2.1 Features

- Provides a bridge between the PCI bus and ISA bus for both Pentium and Pentium Pro systems
- PCI interface
 - PCI master and slave interface
 - PCI master and slave initiated termination
 - PCI spec. 2.1 compliant (Delayed Transaction support)

- Buffers control
 - 8-byte bidirectional line buffers for DMA/ISA memory read/write cycles to PCI bus
 - 32-bit posted write buffer for PCI memory write and I/O data write (for sound card) to ISA bus
- Provides steerable PCI interrupts for PCI device plug-and-play
 - Up to eight PCI interrupt routing
 - Level-to-edge trigger transfer
- Enhanced DMA controller
 - Provides 7 programmable channels: 4 for 8-bit data size, 3 for 16-bit data size
 - 32-bit addressability
 - Provides compatible DMA transfers
 - Provides Type F transfers
- Interrupt controller
 - Provides 14 interrupt channels
 - Independent programmable level/edge triggered channels
- Counter/Timers
 - 8254 compatible timers for System Timer, Refresh Request, Speaker Output Use
- Distributed DMA supported
 - 7 DMA Channels can be arbitrarily programmed as distributed channel
- Serialized IRQ supported
 - Quiet/Continuous mode
 - Programmable (default 21) IRQ/DATA frames
 - Programmable START frame pulse width
- Plug-and-Play port supported
 - One programmable chip select
 - Two steerable interrupt request lines
- Built-in keyboard controller
 - Built-in PS/2/AT keyboard and PS/2 mouse controller
- Supports up to 256-KB ROM size decoding

- Supports positive/subtractive decode for ISA device
- PMU features
 - Full-support for ACPI and OS directed power management
 - CPU SMM Legacy mode and SMI feature supported
 - Supports programmable STPCLKJ: throttle/CKONSTP/CKOFFSTP control
 - Supports I/O trap for I/O restart feature
 - PMU operation states :
 - On
 - Standby
 - Sleeping (Power-On Suspend)
 - Suspend (Suspend to DRAM)
 - Suspend to HDD
 - Soft Off
 - Mechanical Off
 - APM state detection and control logic supported
 - · Global and local device power control logic
 - Ten Programmable Timers: Standby / LB / LLB / APMA / APMB / Global_Display / Primary_IDE / Secondary_IDE / SIO&Audio / Programmable IO Region
 - Provides system activity and display activity monitorings, including:
 - Video
 - Audio
 - Hard disk
 - Floppy
 - Serial ports
 - Parallel port
 - Keyboard
 - Six programmable I/O groups
 - Three programmable memory spaces
 - Provides hot plugging events detection

- CRT connector
- AC power
- Docking insert
- Eject
- Setup button
- Hot key press
- Multiple external wakeup events of Standby mode
 - Power button
 - Cover open
 - Modem ring
 - RTC alarm
 - EXTSW
 - DRQ2
- Suspend wakeup detected
 - Hot key
 - Modem ring
 - RTC alarm
 - Cover open
 - Docking insert
 - Power button
 - USB events
 - IRQ
 - EJECT
 - ACPWR
 - GPIO[19:16] event
- Two-level battery warning monitor
- Thermal alarm supported

- Clock generator control logic supported
 - CPUCLK stop control
 - PCICLK stop control
 - PLL stop control
 - Down frequency control
- L2 cache power down and PCI CLKRUN control logic supported
- 21 general purpose input signals, 24 general purpose output signals, 20 general purpose input/output signals
- 16 external expandable general purpose inputs, 16 external expandable general purpose outputs
- LCD control
- All registers readable/restorable for proper resume from Suspend state
- Built-in PCI IDE controller
 - Supports Ultra 33 Synchronous DMA Mode transfers up to Mode 2 Timing (33 MB/sec)
 - Supports PIO Modes up to Mode 5 timings, and Multiword DMA Mode 0, 1 ,2 with independent timing of up to 4 drives
 - Integrated 10 x 32-bit read ahead & posted write buffers for each channel (total: 20 Dwords)
 - Dedicated pins of ATA interface for each channel
 - Supports tri-state IDE signals for swap bay
- USB interface
 - One root hub with two USB ports based on OpenHCI 1.0a specification
 - Supports FS (12Mbits/sec) and LS (1.5Mbits/sec) serial transfer
 - Supports Legacy keyboard and mouse software with USB-based keyboard and mouse
- SMBus interface
 - System Management Bus interface which meets the v1.0 specification
- External APIC interface supported
- 328-pin (27mm x 27mm) BGA package

2.2.2 Pin Diagram

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A	NC	AD21	AD18	CBEJ2	STOPJ	AD14	AD9	AD5	AD0	SIDED7	SIDED10	SIDED2	SIDED15	5 SIDEAK.	I SIDECS3J	PIDED6	PIDED10	PIDED3	NC	NC
в	NC	AD22	AD19	AD16	DEVSEL.	AD15	AD10	AD6	AD1	PHLDJ	SIDED5	SIDED12	SIDED0	SIDEIRD	Y SIDECS1.	PIDED9	PIDED11	PIDED	13 PIDED	2 PIDED14
c	CBEJ3	AD23	AD20	AD17	TRDYJ	CBEJ1	AD11	AD7	AD2	PHLDA	J SIDED9	SIDED3	SIDED14	SIDEIC	RJ SIDE	A2 PIDE	05 PIDED	4 PIDED	1 PIDED	15PIDED0
D	AD26	AD25	AD24	PCIRSTJ	IRDYJ	PAR	AD12	CBEJ0	AD3	CLKRUN	J SIDED6	SIDED11	SIDED1	SIDEION	J SIDEA0	PIDED8	B PIDED12	2 PIDEA	1 PIDEA0	PIDEA2
E	AD29	AD28	AD27	AD30	FRAMEJ	SERRJ	AD13	AD8	AD4	PCICLK	SIDED8	SIDED4	SIDED13	SIDEDR	SIDEA1	PIDED7	PIDEAKJ	PIDECS1	J PIDECS	3J INTR
F	USBCLK	GPO8	AD31	INTAJ	INTBJ	VCC_B								VCC_E	VCC_E	PIDEIOW	J PIDEIRDY	NMI	SMIJ	IGNNEJ
G	USBP0-	USBP0+	GPO4	INTCJ	INTDJ	VCC_B				M15	533				VCC_3C	PIDEDRO	PIDEIORJ	CPURST	A20MJ	INIT
н	USBP1-	USBP1+	GPI3	GPO3	GPO	2	[GND	GND	GND	GND	GND	GND]		IRQ13	STPCLK	SMBDAT	SMBCL	k RI
J	SD7	RSTDRV	И ЮСНКЈ	GPI1	GP10			GND	GND	GND	GND	GND	GND			GPO1	GPO20	GPIO19	GPIO18	GPIO17
ĸ	SD5	IRQ9	SD6	MSCLK	MSDA	TA		GND	GND	GND	GND	GND	GND			LLBJ	роскј с	GPIO16	GPIO15	GPIO14
L	SD3	DREQ2	SD4	KBCLK	KBDATA			GND	GND	GND	GND	GND	GND			IRQ8J	SUSTAT1J	PWRBTN	J GPIO13	GPIO12
м	IOCHRDY	SD0	SD1	NOWSJ	SD2			GND	GND	GND	GND	GND	GND			PWG	HOTKEYJ	RSMRST	J LBJ	LID
N	IOWJ	SA19	SMEMRJ	AEN	SMEMV	VJ		GND	GND	GND	GND	GND	GND		VDD5S	SIRQI	SIRQII	OSC32KI	OSC32KI	OSC32KO
Р	SA16	DACKJ3	SA17	IORJ	SA18	VCC_A									vcc_c	GPO19	GPO18	GPO23	GPO22	GPO21
R	DREQ1	SA14	DACKJ1	SA15	DREQ3	VDD5	VCC_A							Vcc_3/	VCC_/	GPO17	GPO16	GPO15	GPO14	GPO13
Т	REFSHJ	SA13	IRQ6	IRQ4	DACKJ2	BALE	LA23	LA20	DACKJ0	MEMWJ	DREQ6	ROMKBCS	RTCAS	RTCR	V IRQ1I	GPO12	GPO11	GPO10	GPO9	GPO7
U	SA12	IRQ7	IRQ5	IRQ3	тс	OSC14M	IRQ10	IRQ15	LA17	DREQ5	SD10	SD12	RTCDS	XD0	XD4	EJECT	GPIO11	GPO6	GPO5	GPO0
v	SYSCLK	SA10	SA8	SA5	SA2	M16J	LA22	LA19	DREQ0	SD8	DACKJ7	SD13	SPKR	XD1	XD5	ACPWR	GPI6	GPIO8	GPIO9	GPI010
w	SA11	SA9	SA7	SA4	SA1	SBHEJ	IRQ11	IRQ14	MEMRJ	DACKJ6	SD11	SD14	SPLED	XD2	XD6	SETUPJ	GPI4	GPI7	GPI8	NC
Y	NC	NC	SA6	SA3	SA0	IO16J	LA21	LA18	DACKJ5	SD9	DREQ7	SD15	EXTSW	XD3	XD7	THRMJ	CRT	GPI2	GPI5	NC

TOP VIEW

Figure 2-2 M1533 Pin Diagram

2.2.3 Pin Descriptions

Pin Name	Type	Description						
Clock & Rocat Linit								
PWG	Schmitt	Power-Good Input. This signal comes from the power supply to indicate that power is available and stable. The de-assertion of this input will enable the leakage control circuit between Soft-off (Suspend to Disk) resume circuit and no power circuit.						
PCICLK	I-Group B	PCI Clock for Internal PCI Interface. This is an input PCI clock, it should always be running at ON, STANDBY, SLEEP (Power-On Suspend) state. When CLKRUNJ is active, this clock should always keep on running. Internal PCI state machine and ISA state machine will use this clock.						
OSC14M	I-Group A	14.318Mhz Clock Input. This input clock will be used for Power Management timer, M8254 timer, SM bus base frequency and ISA state machine.						
OSC32KI	I-Group C	32 Khz Oscillator Input1. This is a crystal input 1 from a 32.768 KHz Quartz Crystal. The M1533 will generate the 32 KHz clock for the internal Suspend circuit and output the clock from the CLK32KO to North Bridge DRAM Suspend Refresh Circuit. If a crystal is not used, an external 32 Khz clock input should connect to this pin.						
OSC32KII	I-Group C	32 Khz Oscillator Input2. This is a crystal input 2 from a 32.768 KHz Quartz Crystal. The M1533 will generate the 32 KHz clock for the internal Suspend circuit and output the clock from the CLK32KO to North Bridge DRAM Suspend Refresh Circuit. If a Crystal is not used, this pin should be floated.						
CLK32KO	O-Group C 2.4/2.4 mA	32 KHz Clock Output for DRAM Refresh. At ON, STANDBY, SLEEP (Power On Suspend), SUSPEND (Suspend to DRAM) states, the output will send to Memory controller, to support DRAM refresh clock. At Soft off and Suspend to Disk states, the output will drive low to avoid leakage current.						
USBCLK	I-Group B	48 MHz USB Clock Input. This clock will send to USB state machine to generate USB signals.						
PCI Bus Interface Uni	it :							
PCIRSTJ	O-Group B 12/16 mA	PCI Bus Reset. This is an output signal to reset the entire PCI Bus. This signal will be asserted during system reset and is a logic invert of RSTDRV.						
AD[31:0]	I/O Group B 12/16 mA	Address and Data Multiplexed Bus. During the first clock of a PCI transaction, AD[31:0] contain a physical address. During subsequent clocks, AD[31:0] contain data.						
CBEJ[3:0]	I/O Group B 12/16 mA	Bus Command and Byte enable. During address phase, CBEJ[3:0] define the Bus Command. During data phase, CBEJ[3:0] define the Byte Enables.						
FRAMEJ	I/O Group B 12/16 mA	Cycle Frame. Cycle Frame is driven by current initiator to indicate the beginning and duration of a PCI access.						
TRDYJ	I/O Group B 12/16 mA	Target Ready. Target Ready indicates the target's ability to complete the current data phase of the transaction.						
IRDYJ	I/O Group B 12/16 mA	Initiator Ready. Initiator Ready indicates the initiator's ability to complete the current data phase of the transaction.						

STOPJ	I/O Group B	Cycle stop request. Cycle Stop indicates the target is requesting the master stop the current transaction.					
	12/16 mA						
DEVSELJ	I/O Group B 12/16 mA	Device Select. This signal indicates that the target device has decoded the address as its own cycle. This pin is an output pin when M1533 acts as a PCI slave has decoded address as its own cycle including subtractive decoding.					
SERRJ	I-Group B	System Error. This signal may be pulsed active by any agent that detects a system error condition. When SERRJ is sampling low, M1533 will assert NMI to generate non-maskable interrupt to CPU.					
PAR	I/O Group B 12/16 mA	Parity Signal. PAR is an Even Parity and is calculated on AD[31:0] and CBEJ[3:0]. When M1533 acts as a PCI master, it drives PAR one PCI clock after address phase for read/write transaction and one PCI clock after data phase for write transaction. When the M1533 acts as a target, it drives PAR one PCI clock after data phase for PCI clock after data phase for PCI clock after data phase for PCI master read transaction.					
PHLDAJ	I-Group B	PCI Bus Ownership Acknowledge. When PCI bus arbiter asserts this pin, M1533 has owned the PCI bus.					
PHOLDJ	O-Group B 4/4 mA	PCI Bus Ownership Request. M1533 requests the ownership of the PCI bus from the PCI bus arbiter on the North Bridge. M1533 will assert this signal on behalf of the ISA Master, DMA Device, IDE Master, and the USB Master.					
INTAJ_MI	I-Group B	PCI INTA. PCI interrupt input A or PCI interrupt polling input. M1533 can support up to 8 PCI Interrupts routing by using a 74F181 to do the polling. This pin is a multi-function pin: it is an INTAJ when 4 PCI Interrupts are supported, or connects to the 74F181 encoded output to support the 8 PCI Interrupts polling mode.					
INTBJS0	I/O Group B Schmitt 4/4 mA	PCI INTB. PCI interrupt input B or polling select_0 output. M1533 can support up to 8 PCI Interrupts routing by using a 74F181 to do the polling. This pin is a multi-function pin: it is an INTBJ when 4 PCI Interrupts are supported, or connects to the 74F181 selection input 0 to support the 8 PCI Interrupts polling mode.					
INTCJS1	I/O Group B Schmitt 4/4 mA	PCI INTC. PCI interrupt input C or polling select_1 output. M1533 can support up to 8 PCI Interrupts routing by using a 74F181 to do the polling. This pin is a multi-function pin: it is the INTCJ when 4 PCI Interrupts are supported, or connects to the 74F181 selection input 1 to support the 8 PCI Interrupts polling mode.					
INTDJS2	I/O Group B Schmitt 4/4 mA	PCI INTD. PCI interrupt input D or polling select_2 output. M1533 can support up to 8 PCI Interrupts routing by using a 74F181 to do the polling. This pin is a multi-function pin: it is the INTDJ when 4 PCI Interrupts are supported, or connects to the 74F181 selection input 2 to support the 8 PCI Interrupts polling mode.					
CPU interface :							
INIT	O-Group E	CPU Initialize Interrupt. CPU cold & warm reset. When CPU is Pentium Pro,					
	2.4/2.4 mA	this signal is low active. Otherwise, this signal is high active. When power on, KBC RC, port 92 RC, shutdown all will trigger INIT active.					
CPURST	O-Group E 2.4/2.4 mA	CPU Cold Reset. When power turn on, this reset signal will be asserted, and then will become de-asserted until 4 ms after PWG becomes high.					
IGNNEJ	O-Group E 2,4/2,4 mA	Ignore Error. This pin is used as the ignore numeric coprocessor error.					
INTR	O-Group E 2.4/2.4 mA	Interrupt Request to CPU. This is the interrupt signal generated by the internal 8259 and should connect to CPU INTR as a maskable interrupt.					

NMI	O-Group E 2.4/2.4 mA	Non-maskable Interrupt to CPU. This is generated by the ISA Parity error (IOCHKJ assertion), PCI Parity error or DRAM Parity error (SERRJ assertion), and the other internal error event. This output should connect to CPU NMI as a non-maskable interrupt.						
A20MJ	O-Group E	CPU A20 Mask. This is the CPU Address line 20 mask signal.						
	2.4/2.4 mA							
FERRJ/	I-Group E	Floating Point Error. FERRJ input to generate IRQ13. When Coprocessor						
IRQ13		interface is disabled through configuration register Index-43h bit 6 setting, the function of this pin is IRQ13.						
ISA Bus Interface Uni	it :							
IRQ[15:14],	I/O	Interrupt Request. The Interrupt Request lines are directly from the ISA Bus,						
IRQ[11:9],	Group A	from the PCI Interrupt Routing, or from the steerable Interrupt pins. The M15						
IRQ[7:3]	Schmitt	the APIC interface.						
	9.6/9.6 mA							
RSTDRV	O-Group A	ISA Bus reset. This output is used to reset the ISA Bus and the system device.						
	12/16 mA	This pin will be active if the system reset is needed.						
SD[15:8]	I/O	ISA High Byte Slot Data Bus. These pins should connect to the ISA High Byte						
	Group A	Slot Data Bus.						
	12/12 mA							
XD[7:0]	I/O	XD Data Bus. When the SD[7:0] pins are defined as the GPIO[7:0] pins, these						
	Group A	pins can be used to drive SD[7:0] if TTL LS245 is used as a buffer. M1533 signal XDIR will control this buffer.						
	12/12 mA							
SD[7:0]/	I/O	ISA Low Byte Slot Data Bus or General Purpose I/O. When external SD[7:0]						
GPIO[7:0]	Group A	bus is supported by the XD[7:0] bus through a LS245 TTL, these pins are use as the GPIO pins for green control. Otherwise, these pins are SD[7:0]. No						
	12/12 mA	external LS245 is required.						
SA[19:17]	O-Group A	ISA Slot Address Bus A19-A17. These pins should connect to the ISA System						
	12/12 mA	Address Bus.						
SA[16:0]	I/O	ISA Slot Address Bus A16-A0. These pins should connect to the ISA System						
	Group A	Address Bus.						
	12/12 mA							
SBHEJ	I/O	ISA Byte High Enable. This pin should connect to the ISA System Byte High						
	Group A	Enable pin.						
	12/12 mA							
LA[23:17]	I/O	ISA Latched Address Bus. They are inputs during ISA master cycle and should						
	Group A	connect to ISA Slot Latch Address Bus.						
	12/12 mA							
ISA Bus Interface Uni	it :	1						
IO16J	I -Group A	ISA 16 Bit I/O Device Indicator. This is an input and will be driven by the device						
		if the ISA I/O cycle is a 16-bit access.						
M16J	I/O	ISA 16 Bit Memory Device Indicator. This pin will be driven by the device or by						
	Group A	the IVI 1533 IT the ISA Memory cycle is a 16-bit access.						
	12/20 mA							

MEMRJ	I/O	ISA Memory Read. This signal is an output when the M1533 is the ISA Bus master or an input during ISA master cycle						
	Group A	····· , · · ···· ··· ·················						
	12/12 MA							
MEMVVJ	1/0	ISA Memory Write. This signal is an output when the M1533 is the ISA Bus master, or an input during ISA master cycle.						
	Group A							
	12/12 MA	104 L/O Address Eachle. This simulation between a sting high during DMA such						
AEN	O-Group A	to prevent I/O device to decode DMA cycles as valid I/O cycles.						
	12/12 MA	104 Oustan Daada. This simplify an extent during 104 meatre such as an						
IOCHRDY		input when the M1533 is the ISA Bus master.						
	12/20 mA							
		ISA Zero Weit State for Input. This input signal will terminate the CDU to ISA						
NOW 55	I-Gloup A	command instantly.						
IOCHKJ	I-Group A	ISA Parity Error. M1533 will generate NMI to CPU when this signal is asserted.						
SYSCLK	O-Group A	ISA System Clock. This output is generated by the PCI clock and is used as						
	12/12 mA	the ISA system clock.						
BALE	O-Group A	Bus Address Latch Enable. BALE will be asserted throughout DMA, ISA						
	12/12 mA	master , and the Refresh cycles. Otherwise, it will only assert half the SYS before the ISA command is asserted.						
IORJ	I/O	ISA I/O Read. This signal is an input during ISA master cycle, and an output						
	Group A	when the M1533 is the ISA Bus master.						
	12/16 mA							
IOWJ	I/O	ISA I/O write. This signal is an input during ISA master cycle, and an output						
	Group A	when the M1533 is the ISA Bus master.						
	12/12 mA							
SMEMRJ	O-Group A	ISA System Memory Read. This signal indicates that the memory read						
	12/12 mA	command is below 1 M Byte address.						
SMEMWJ	O-Group A	ISA System Memory Write. This signal indicates that the memory write						
	12/12 mA	command is below TM Byte address.						
DREQ[7:5],	I-Group A	DMA Request Signals. These are inputs from the DMA Device or ISA Master						
DREQ[3:0]	Schmitt	Bus Master request, and USB Master request to generate the PHOLDJ to the						
		PCI Arbiter.						
DACKJ[7:5],	O-Group A	DMA Acknowledge Signals. After the M1533 has got the PCI Bus grant						
DACKJ[3:0]	9.6/9.6 mA	(PHLDAJ), the internal arbiter will assert the DMA acknowledge signal to the DMA Device Request.						
тс	O-Group A	DMA End of Process. This signal will be asserted after the DMA Device has						
	12/12 mA	ended the transaction.						
REFSHJ	I/O	ISA Refresh Cycle. This signal is an input during ISA master cycle, and an						
	Group A	output when the M1533 is the ISA Bus master.						
	12/20 mA							
Miscellaneous Logic :								
SPKR	O-Group A	Speaker Output. This pin is used to control the Speaker Output and should						
	4/4 mA	connect to the Speaker.						
RTCAS	O-Group A 4/4 mA	RTC Address Strobe. This pin is used as the RTC Address Strobe and should connect to the RTC.						
--------------------	---------------------------------------	---						
RTCRW	O-Group A 4/4 mA	RTC Write strobe. This pin is used as the RTC Read/Write Command and should connect to the RTC. The M1533 will drive the RTC command through dedicated pin instead of the 74F32 decode to save the system cost.						
RTCDS	O-Group A 4/4 mA	RTC Data Strobe. This pin is used as the RTC Data Strobe and should connect to the RTC.						
SPLED	O-Group A 4/4 mA	Speed LED Output. This pin is used to control the Speed LED Output and should connect to LED.						
ROMKBCSJ	O-Group A 4/4 mA	ROM/Keyboard Chip Select. This pin is the ROM chip select and is the Keyboard chip select also when internal KBC is disabled.						
SERIRQ/ GPI[2]	B/I Group A 12/16 mA	Serial Interrupt Request or General Purpose Input. This pin is used to support the serial interrupt protocol or as a General Purpose Input.						
SIRQI	I-Group A Schmitt	Steerable IRQ Input1. This is a steerable Interrupt input, M1533 will provide a Routing Mechanism to route this Interrupt to any 8259 input.						
SIRQII	I-Group A Schmitt	Steerable IRQ Input2. This is a steerable Interrupt input, M1533 will provide a Routing Mechanism to route this Interrupt to any 8259 input.						
IRQ8J	I-Group C Schmitt	RTC Interrupt Input. This is the RTC Interrupt input. This pin belongs to the Power Group C, and it can support the RTC Alarm function during Soft-off or Suspend state.						
XDIR/ GPO[12]	O-Group A 4/4 mA	XD Bus Direction Control or General Purpose Output. When external XD bus is designed on motherboard, this pin is X-bus direction control. Otherwise, this pin is a general purpose output.						
KBINH/ IRQ1I	I/O Group A Schmitt 12/24 mA	Keyboard Inhibit or Interrupt One Input. This pin will be the Keyboard Inhibit input when internal KBC is enabled. Otherwise, it will be the IRQ1 input.						
IRQ10/ GPO[13]	O-Group A 4/4 mA	IRQ1 Output or General Purpose Output. When both external APIC and internal KBC are enabled, this pin is IRQ1 output. Otherwise, it is a general purpose output.						
KBCLK/ GPI[9]	I/O Group A Schmitt 12/24 mA	Keyboard Clock or General Purpose Input. This pin is the Keyboard interface Clock when internal KBC is enabled. Otherwise, it is a general purpose input.						
KBDATA/ GPI[10]	I/O Group A Schmitt 12/24 mA	Keyboard data or General Purpose Input. KB interface DATA output when internal KBC is enabled. Otherwise, this pin is a general purpose input.						
MSCLK/ GPI[11]	I/O Group A Schmitt 12/24 mA	Mouse Clock or General Purpose Input. Mouse clock output when internal PS2 Keyboard is enabled. Otherwise, this pin is a general purpose input.						

MSDATA/	I/O	Mouse Data or Interrupt Line 12 Input. Mouse data output when internal PS2
IRQ12I	Group A	Keyboard is enabled. Otherwise, this pin is the IRQ12 input.
	Schmitt	
	12/24 mA	
IRQ120/	O-Group A	Interrupt Line 12 Output or General Purpose Output. When both external APIC
GPO[14]	4/4 mA	and internal KBC are enabled, this pin is IRQ12 output. Otherwise, this pin is a general purpose output.
IRQ0/	O-Group A	Interrupt Line 0 Output or General Purpose Output. This pin is the Interrupt
GPO[15]	4/4 mA	request 0 output when external APIC mode is enabled. Otherwise this pin is a general purpose output.
APICREQJ/	I -Group A	APIC Request Input or General Input. This pin connects to the APIC Chip
GPI[8]		general purpose input.
APICCSJ/	O-Group A	APIC Chip Select or General Purpose Output. This pin connects to the APIC
GPO[16]	4/4 mA	Chip Select Line when external APIC mode is enabled. Otherwise, this pin is a general purpose output.
APICGNTJ/	O-Group A	APIC Grant Output or General Purpose Output. This pin connects to the APIC
GPO[17]	4/4 mA	Chip Grant Line when external APIC mode is enabled. Otherwise, this pin is a general purpose output.
BIOSA17/	O-Group A	ROM Address 17 or General Purpose Output. This pin is the ROM A17 control
GPO[19]	4/4 mA	when 2M ROM is used, or it is a general purpose output.
BIOSA16/	O-Group A	ROM Address 17 or General Purpose Output. This pin is the ROM A16 control
GPO[18]	4/4 mA	when 2M ROM is used, or it is a general purpose output.
PCSJ/	O-Group A	Programmable Chip Select or General Purpose Output. This pin can be
GPO[0]	4/4 mA	selected as a Programmable Chip Select, or as a general purpose output.
IDE interface :	1	
PIDE_DRQ	I-Group D	Primary IDE DMA Request for IDE Master. This is the input pin from the Primary Channel IDE DMA request to do the IDE Master Transfer.
SIDE_DRQ	I-Group D	Secondary IDE DMA Request for IDE Master. This is the input pin from the Secondary Channel IDE DMA request to do the IDE Master Transfer.
PIDE_AKJ	O-Group D	Primary IDE DACKJ for IDE Master. This is the output pin to grant the Primary
	9.6/9.6 mA	Channel IDE DMA request to begin the IDE Master Transfer.
SIDE_AKJ	O-Group D	Secondary IDE DACKJ for IDE Master. This is the output pin to grant the
	9.6/9.6 mA	Secondary Channel IDE DMA request to begin the IDE Master Transfer.
PIDE_RDY	I-Group D	Primary IDE Ready. This is the input pin from the Primary IDE Channel to indicate the IDE device is ready to terminate the IDE command. The IDE device can de-assert this input (logic 0) to expand the IDE command if the device is not ready.
SIDE_RDY	I-Group D	Secondary IDE Ready. This is the input pin from the Secondary IDE Channel to indicate the IDE device is ready to terminate the IDE command. The IDE device can de-assert this input (logic 0) to expand the IDE command if the device is not ready.
PIDEIORJ	O-Group D 12/12 mA	Primary IDE IORJ Command. This is the IORJ command output pin to notify the Primary IDE device to assert the Read Data.
SIDEIORJ	O-Group D	Secondary IDE IORJ Command. This is the IORJ command output pin to notify
	12/12 mA	the Secondary IDE device to assert the Read Data.

PIDEIOWJ	O-Group D 12/12 mA	Primary IDE IOWJ Command. This is the IOWJ command output pin to notify the Primary IDE device that the available Write Data is already asserted by M1533.
SIDEIOWJ	O-Group D 12/12 mA	Secondary IDE IOWJ Command. This is the IOWJ command output pin to notify the Secondary IDE device that the available Write Data is already asserted by M1533.
PIDECS1J	O-Group D 9.6/9.6 mA	IDE Chip Select 1 for Secondary Channel 0. This is the Chip Select 1 command output pin to enable the Primary IDE device to watch the Read/Write Command.
PIDECS3J	O-Group D 9.6/9.6 mA	IDE Chip Select 3 for Secondary Channel 1. This is the Chip Select 3 command output pin to enable the Primary IDE device to watch the Read/Write Command.
SIDECS1J	O-Group D 9.6/9.6 mA	IDE Chip Select 1 for Primary Channel 0. This is the Chip Select 1 command output pin to enable the Secondary IDE device to watch the Read/Write Command.
SIDECS3J	O-Group D 9.6/9.6 mA	IDE Chip Select 3 for Primary Channel 1. This is the Chip Select 3 command output pin to enable the Secondary IDE device to watch the Read/Write Command.
PIDE_A[2:0]	O-Group D 9.6/9.6 mA	Primary IDE ATA Address Bus. These are the Address pins connected to Primary Channel.
SIDE_A[2:0]	O-Group D 9.6/9.6 mA	Secondary IDE ATA Address Bus. These are the Address pins connected to Secondary Channel.
PIDE_D[15:0]	I/O Group D 9.6/9.6 mA	Primary IDE ATA Data Bus. These are the Data pins connected to Primary Channel.
SIDE_D[15:0]	I/O Group D 9.6/9.6 mA	Secondary IDE ATA Data Bus. These are the Data pins connected to Secondary Channel.
Power Managemer	nt Unit :	
RSM_RSTJ	I-Group C Schmitt	Resume Circuit Initial Reset Input. This input is used to initialize the resume circuit.
SMIJ	O-Group E 4/4 mA	SMM Interrupt Output. This output should be connected to CPU SMM Interrupt input.
STPCLKJ	O-Group E 4/4 mA	Stop CPU Internal Clock Output. This output is used to stop the CPU internal clock and should be connected to CPU STPCLKJ input.
SLEEPJ/ GPO[20]	O-Group E 4/4 mA	Pentium PRO Sleep State or General Purpose Output. This output will force Pentium PRO CPU to enter Sleep State, or as a general purpose output.
ZZ/ GPO[1]	O-Group E 4/4 mA	PBSRAM Power Saving Mode or General Purpose Output. This output is used to control L2 cache entering power saving mode, or as a general purpose output.
CLKRUNJ	I/O - Group B 12/16 mA	PCI Clock Stop Message Control. This pin is used to support PCI Clock Run function.
CPU_STPJ/ GPO[2]	O-Group B 4/4 mA	Clock Cell CPU Clock Stop or General Purpose Output. This output is used to stop the CPU Clock of the clock generator, or as a general purpose output.
PCI_STPJ/ GPO[3]	O-Group B 4/4 mA	Clock Cell PCI Clock Stop or General Purpose Output. This output is used to stop the PCI Clock of the clock generator, or as a general purpose output.

SUSTAT1J	O-Group C 4/4 mA	Suspend Status for North Bridge. This output is used to notice the north bridge to control DRAM suspend refresh circuit.	
SLOWDWN/ GPO[4]	O-Group B 4/4 mA	Slow Down the Clock Generator Output or General Purpose Output. This output is used to control the Clock Generator to slow down the clock output, or as a general purpose output.	
AMSTATJ/	O-Group B	APM State Control. It is asserted when HALT or STPGNT cycle is detected.	
GPO[8]	4/4 mA		
PWRBTNJ	I-Group C Schmitt	Power Button Input. This input is used to support the ACPI Power Button function.	
PCIREQJ/ GPI[3]	I-Group B	PCI Bus Request Event Input or General Purpose Input. This input comes from the North Bridge or external circuit to notice M1533 there is PCI request pending. This pin can also be programmed as a general purpose input.	
POSSTA/ GPI[4]	I -Group A	Force M1533 into Suspend Mode or General Purpose Input. This input can be used to force M1533 entering suspend mode, or as a general purpose input.	
SQWO/ GPO[9]	O-Group A 4/4 mA	Square Wave Output or General Purpose Output. This output can be used to output Square Wave with 1Hz or 2Hz, or as a general purpose output.	
OFF_PWR0/	O-Group C	Remove Clock Generator Power Control or General Purpose Output. This	
GPO[21]	4/4 mA	output can be used to remove the Clock Generator Power, or as a general purpose output.	
OFF_PWR1/	O-Group C	Remove All Circuit Power Except Internal Suspend Circuit and External DRAM	
GPO[22]	4/4 mA	or General Purpose Output.	
OFF_PWR2/	O-Group C	Remove All Circuit Power Except Internal Suspend Circuit or General Purpose	
GPO[23]	4/4 mA	Output.	
RI	I -Group C Schmitt	Ring-in or General Purpose Input. This input connects to Modem Ring-in input to support ACPI Ring-in function, or as a general purpose input.	
LBJ	I -Group C Schmitt	First Battery Low Indication Input or General Purpose Input. This input can be used as the first stage battery low level indication, or as a general purpose input signal.	
LLBJ	I -Group C Schmitt	Last Battery Low Indication Input or General Purpose Input. This input can be used as the last battery low level indication, or as a general purpose input signal.	
EXTSW	I -Group A Schmitt	External Switch Event or General Purpose Input. EXTSW is a triggered input to the M1533 showing that an external device is requesting the system to enter power management mode. This signal also can be used optionally as a general purpose input signal.	
THRMJ	I -Group A Schmitt	Thermal Event Input or General Purpose Input. THRMJ is a triggered input to the M1533 showing that the external thermal detected circuits are requesting the system to enter power management mode. This signal also can be used optionally as a general purpose input signal.	
ACPWR	I - Group A Schmitt	Detect AC Adapter Plug-in or General Purpose Input. This is a triggered input showing that the AC adapter is plugged in or plugged out event. This triggered event can be used as a system management (or control) interrupt source. This signal also can be used optionally as a general purpose input signal.	
CRT	I -Group A Schmitt	Detect CRT Connector Plug-in or General Purpose Input. This signal represents whether the external CRT connector is plugged in/ plugged out, or used as a general purpose input.	
SETUPJ	I -Group A	Setup Switch Input or General Purpose Input. This signal can be used as a setup switch triggered input for generating the power management interrupt event, or as a general purpose input signal.	

EJECT	I -Group A	External Eject SMIJ Trigger or General Purpose Input. This triggered input is used as an eject (undocking) event indicator, or as a general purpose input signal.
LID	I -Group C	Cover Switch Input or General Purpose Input. This signal is used to indicate if the system's lid is open or closed, or as a general purpose input.
HOTKEYJ	I -Group C Schmitt	Hot Key Press Event Input or General Purpose Input. This input signal is used to indicate a hot key press event occurred or not, or as a general purpose input.
DOCKJ	I-Group C	Docking Insert Event Input or General Purpose Input. This triggered input is used as a docking event indicator, or as a general purpose input signal.
VCSJ/ GPI[5]	I-Group A	VGA Activity Event Input or General Purpose Input. The VGA chip should set this signal to active low when an VGA memory access occurred. This active signal is used by the M1533 to reload the VGA monitor timer or to generate a system management event. This signal also can be used as a general purpose input.
FPVEE/ GPI[6]	I-Group A	LCD Back Light VEE Input or General Purpose Input. This signal is used by the M1533 to generate DISPLAY and a programmable CCFT signals. This signal also can be used as a general purpose input.
CCFT/ GPO[5]	O-Group A 4/4 mA	Back Light Control or General Purpose Output. This signal can be programmed to be a periodical wave controlled by the FPVEE signal or kept to static low level. This signal also can be used as a general purpose output.
DISPLAY/ GPO[6]	O-Group A 4/4 mA	LCD Display On/Off Control or General Purpose Output. This signal can be programmed to be a response controlled by the FPVEE signal, or it can also be used as general purpose output.
CONTRAST/ GPO[7]	O-Group A 4/4 mA	LCD Contrast Control or General Purpose Output. It is a 1KHz signal with programmable duty cycle and can be used to control LCD contrast. It can also be a general purpose output.
GPIORBJ/ GPO[10]	O-Group A 4/4 mA	Input Event Latching into External Buffers Command or General Purpose Output. This signal can be used as an external buffer(s) latching command for extended general inputs, or as a normal general purpose output signal.
GPIOWB/ GPO[11]	O-Group A 4/4 mA	Output Control Signal Latching into External Buffers Command or General Purpose Output. This signal can be used as an external buffer(s) latching command for extended general outputs, or as a normal general purpose output signal.
GPIO[19:16]	I/O Group C Schmitt 4/4 mA	General Purpose I/O Pins for Resume from Suspend Mode. These signals can be programmed as the inputs or outputs for the resume triggered events from the suspend mode.
GPIO[15:12]/ BATSEL[3:0]	I/O Group C Schmitt 4/4 mA	General Purpose I/O Pins or SM Bus Battery Select. These signals can be used as the general purpose I/O pins, or as the external SMB battery select control signals.
GPIO[11:8]	I/O Group A Schmitt 4/4 mA	General Purpose I/O Pins for Wake-up from Stand-by Mode. These signals can be programmed as the inputs or outputs for the wake-up triggered events from the standby mode.
USB interface :	·	·
USBP0+	I/O	Universal Serial Bus Port 0. These are the serial data pair for USB Port 0.
USBP0-	Group B	

USBP1+	I/O	Universal Serial Bus Port 1. These are the serial data pair for USB Port 1.
USBP1-	Group B	
OVCRJ[1:0]/	I -Group B	Over Current Detect Inputs or General Purpose Inputs. These two pins are
GPI[1:0]		used to monitor the USB Power Over Current, or as two general purpose inputs.
SM Bus signal :		
SMBEVENTJ/	I-Group A	SM Bus Resume Event or General Purpose Input. This signal can be used as
GPI[7]	Schmitt	the SM Bus resume event indicator, or as a general purpose input.
SMBCLK	I/O-Group C	SM Bus Clock. SM Bus clock signal should be combined with SM Bus data to
	Schmitt	carry information between the devices connected to the SM Bus.
	9.6/9.6 mA	
SMBDATA	I/O-Group C	SM Bus Data Line. SM Bus data signal should be combined with SM Bus clock
	Schmitt	to carry information between the devices connected to the SM Bus.
	9.6/9.6 mA	
Power Pins :	_	
VCC_A	P	Vcc 3.3V or 5V for Power Group A. This power is used for ISA interface. If this power connects to 3.3V, the relative signals will output 3.3V and accept 5V input tolerance. If this power connects to 5V, the relative signals will output 5V TTL and accept TTL input.
VCC_3A	Р	Vcc 3.3V for Power Group A. This power is used for ISA interface. If Vcc_A is selected as 3.3V, this power pin connects with Vcc_A to 3.3V power plane. If Vcc_A is selected as 5V, this power pin should connect to 3.3V power plane to save power consumption.
VCC_B	Р	Vcc 3.3V for Power Group B. This power is used for PCI interface. It must be connected to 3.3V. The relative signals will output 3.3V and 5V input tolerance.
VCC_C	Ρ	Vcc 3.3V or 5V for Power Group C. This power is used for resume/ suspend control interface signals during normal operation and suspend periods. If this power is connected to 3.3V, the relative signals will output 3.3V and accept 5V input tolerance. If this power is connected to 5V, the relative signals will output 5V TTL and accept TTL input.
VCC_3C	Ρ	Vcc 3.3V for Power Group C. This power is used for Resume/Suspend Control interface. If Vcc_C is selected as 3.3V, this power pin connects with Vcc_C to 3.3V power plane. If Vcc_C is selected as 5V, this power pin should connect to 3.3V power plane to save power consumption.
VCC_D	Ρ	Vcc 3.3V or 5V for Power Group D. This power is used for IDE interface. If this power is connected to 3.3V, the relative signals will output 3.3V and accept 5V input tolerance. If this power is connected to 5V, the relative signals will output 5V TTL and accept TTL input.
VCC_E	P	Vcc 3.3V or 2.5V for Power Group E. This power is used for CPU interface. If this power connects to 3.3V, the relative signals will output 3.3V and accept 3.3V input. If this power connects to 2.5V, the relative signals will output 2.5V and accept 2.5V input.
VDD_5	Р	Vcc 5.0V for core Power. It supplies the core power for the internal circuit except the suspend circuit.
VDD_5S	Р	Vcc 5.0V for Suspend/Resume Core Power. It supplies the core power for the internal suspend/resume circuit.
Vss or Gnd	Р	Ground.

2.2.4 Numerical Pin List

Pin No.	Pin Name	Pin Type
A1		
A2	AD21	I/O
A3	AD18	I/O
A4	CBEJ2	I/O
A5	STOPJ	I/O
A6	AD14	I/O
A7	AD9	I/O
A8	AD5	I/O
A9	AD0	I/O
A10	SIDED7	I/O
A11	SIDED10	I/O
A12	SIDED2	I/O
A13	SIDED15	I/O
A14	SIDEAKJ	0
A15	SIDECS3J	0
A16	PIDED6	I/O
A17	PIDED10	I/O
A18	PIDED3	I/O
A19		-
A20		-
B1		-
B2	AD22	I/O
B3	AD19	I/O
B4	AD16	I/O
B5	DEVSELJ	I/O
B6	AD15	I/O
B7	AD10	I/O
B8	AD6	I/O
B9	AD1	I/O
B10	PHOLDJ	0
B11	SIDED5	I/O
B12	SIDED12	I/O
B13	SIDED0	I/O
B14	SIDERDY	Ι
B15	SIDECS1J	0
B16	PIDED9	I/O
B17	PIDED11	I/O

Pin No.	Pin Name	Pin Type
B18	PIDED13	I/O
B19	PIDED2	I/O
B20	PIDED14	I/O
C1	CBEJ3	I/O
C2	AD23	I/O
C3	AD20	I/O
C4	AD17	I/O
C5	TRDYJ	I/O
C6	CBEJ1	I/O
C7	AD11	I/O
C8	AD7	I/O
C9	AD2	I/O
C10	PHLDAJ	I
C11	SIDED9	I/O
C12	SIDED3	I/O
C13	SIDED14	I/O
C14	SIDEIORJ	0
C15	SIDEA2	0
C16	PIDED5	I/O
C17	PIDED4	I/O
C18	PIDED1	I/O
C19	PIDED15	I/O
C20	PIDED0	I/O
D1	AD26	I/O
D2	AD25	I/O
D3	AD24	I/O
D4	PCIRSTJ	0
D5	IRDYJ	I/O
D6	PAR	I/O
D7	AD12	I/O
D8	CBEJ0	I/O
D9	AD3	I/O
D10	CLKRUNJ	I/O
D11	SIDED6	I/O
D12	SIDED11	I/O
D13	SIDED1	I/O
D14	SIDEIOWJ	0
D15	SIDEA0	0
D16	PIDED8	I/O

Pin No.	Pin Name	Pin Type
D17	PIDED12	I/O
D18	PIDEA1	0
D19	PIDEA0	0
D20	PIDEA2	0
E1	AD29	I/O
E2	AD28	I/O
E3	AD27	I/O
E4	AD30	I/O
E5	FRAMEJ	I/O
E6	SERRJ	1
E7	AD13	I/O
E8	AD8	I/O
E9	AD4	I/O
E10	PCICLK	1
Pin no.	Pin name	Туре
E11	SIDED8	I/O
E12	SIDED4	I/O
E13	SIDED13	I/O
E14	SIDEDRQ	1
E15	SIDEA1	0
E16	PIDED7	I/O
E17	PIDEAKJ	0
E18	PIDECS1J	0
E19	PIDECS3J	0
E20	INTR	0
F1	USBCLK	I
F2	GPO8	0
F3	AD31	I/O
F4	INTAJ	1
F5	INTBJ	I/O
F6	VCC	Р
F14	VCC	Р
F15	VCC	Р
F16	PIDEIOWJ	0
F17	PIDERDY	I
F18	NMI	0
F19	SMIJ	0
F20	IGNNEJ	0
G1	USBP0-	I/O

Pin No	Pin	Pin
00		
G2		1/0
G3	GPO4	0
G4		1/0
G5	INTDJ	1/0
G6		P
G15	VCC	Р
G16	PIDEDRQ	1
G17	PIDEIORJ	0
G18	CPURST	0
G19	A20MJ	0
G20	INIT	0
H1	USBP1-	I/O
H2	USBP1+	I/O
H3	GPI3	Ι
H4	GPO3	0
H5	GPO2	0
H8	GND	Р
H9	GND	Р
H10	GND	Р
H11	GND	Р
H12	GND	Р
H13	GND	Р
H16	IRQ13	I/O
H17	STPCLK	0
H18	SMBDATA	I/O
H19	SMBCLK	I/O
H20	RI	I
J1	SD7	I/O
J2	RSTDRV	0
J3	IOCHKJ	I/O
J4	GPI1	1
J5	GPI0	1
J8	GND	Р
J9	GND	Р
J10	GND	Р
J11	GND	Р
J12	GND	Р
J13	GND	Р
J16	GPO1	0

Pin No.	Pin Name	Pin Type
J17	GPO20	0
J18	GPIO19	I/O
J19	GPIO18	I/O
J20	GPIO17	I/O
K1	SD5	I/O
K2	IRQ9	I/O
K3	SD6	I/O
K4	MSCLK	0
K5	MSDATA	I/O
K8	GND	Ρ
K9	GND	Ρ
K10	GND	Р
K11	GND	Р
K12	GND	Р
K13	GND	Ρ
K16	LLBJ	I
K17	DOCKJ	I
K18	GPIO16	I/O
K19	GPIO15	I/O
K20	GPIO14	I/O
L1	SD3	I/O
L2	DREQ2	I
L3	SD4	I/O
L4	KBCLK	I/O
L5	KBDATA	I/O
L8	GND	Р
L9	GND	Р
L10	GND	Р
L11	GND	Р
L12	GND	Р
L13	GND	Р
L16	IRQ8J	I
L17	SUSTAT1J	0
L18	PWRBTNJ	1
L19	GPIO13	I/O
L20	GPIO12	I/O
M1	IOCHRDY	I/O
M2	SD0	I/O
M3	SD1	I/O

Pin	Pin	Pin
NO.	Nowo	' ybe
M4	NOWSJ	1
M5	SD2	1/0
M8	GND	P
M9	GND	P
M10	GND	P
M11	GND	P
M12	GND	Р
M13	GND	P
M16	PWG	1
M17	HOTKEYJ	1
M18	RSMRSTJ	1
M19	LBJ	I
M20	LID	I
N1	IOWJ	I/O
N2	SA19	0
N3	SMEMRJ	0
N4	AEN	0
N5	SMEMWJ	0
N8	GND	Р
N9	GND	Р
N10	GND	Р
N11	GND	Р
N12	GND	Р
N13	GND	Р
N15	VDD5S	Р
N16	SIRQI	I
N17	SIRQII	I
N18	OSC32KII	I
N19	OSC32KI	I
N20	OSC32KO	0
P1	SA16	I/O
P2	DACKJ3	0
P3	SA17	0
P4	IORJ	I/O
P5	SA18	0
P6	VCC	Р
P15	VCC	Р
P16	GPO19	0
P17	GPO18	0
P17	GPO18	0

Pin No.	Pin Name	Pin Type
D19	CPO22	0
P10	GPO22	0
P20	GPO21	0
R1	DREQ1	U
R2	SA14	I/O
R3	DACKJ1	0
R4	SA15	I/O
R5	DREQ3	1
R6	VDD5	Р
R7	VCC	Р
R14	VCC	Р
R15	VCC	Р
R16	GPO17	0
R17	GPO16	0
R18	GPO15	0
R19	GPO14	0
R20	GPO13	0
T1	REFSHJ	I/O
T2	SA13	I/O
Т3	IRQ6	I/O
T4	IRQ4	I/O
T5	DACKJ2	0
Т6	BALE	0
T7	LA23	I/O
Т8	LA20	I/O
Т9	DACKJ0	0
T10	MEMWJ	I/O
T11	DREQ6	I
T12	ROMKBCSJ	0
T13	RTCAS	0
T14	RTCRW	0
T15	IRQ1I	I/O
T16	GPO12	0
T17	GPO11	0
T18	GPO10	0
T19	GPO9	0
T20	GPO7	0
U1	SA12	I/O
U2	IRQ7	I/O

Pin No.	Pin Name	Pin Type
U3	IRQ5	1/0
U4	IRQ3	1/0
U5	тс	0
U6	OSC14M	1
U7	IRQ10	I/O
U8	IRQ15	1/O
U9	LA17	1/O
U10	DREQ5	1
U11	SD10	I/O
U12	SD12	I/O
U13	RTCDS	0
U14	XD0	I/O
U15	XD4	I/O
U16	EJECT	1
U17	GPIO11	I/O
U18	GPO6	0
U19	GPO5	0
U20	GPO0	0
V1	SYSCLK	0
V2	SA10	I/O
V3	SA8	I/O
V4	SA5	I/O
V5	SA2	I/O
V6	M16J	I/O
V7	LA22	I/O
V8	LA19	I/O
V9	DREQ0	I
V10	SD8	I/O
V11	DACKJ7	0
V12	SD13	I/O
V13	SPKR	0
V14	XD1	I/O
V15	XD5	I/O
V16	ACPWR	I
V17	GPI6	1
V18	GPIO8	I/O
V19	GPIO9	I/O
V20	GPIO10	I/O
W1	SA11	I/O

Pin No.	Pin Name	Pin Type
W/2	\$40	
W2 W3	SA7	1/0
W/A	SA/	1/0
W5	SA1	1/0
W6	SBHEL	1/O
W7		1/0
W8	IRQ14	1/O
W9	MEMRJ	1/O
W10	DACKJ6	0
W11	SD11	1/0
W12	SD14	1/O
W13	SPLED	0
W14	XD2	I/O
W15	XD6	I/O
W16	SETUPJ	1
W17	GPI4	1
W18	GPI7	I
W19	GPI8	1
W20		-
Y1		-
Y2		-
Y3	SA6	I/O
Y4	SA3	I/O
Y5	SA0	I/O
Y6	IO16J	I
Y7	LA21	I/O
Y8	LA18	I/O
Y9	DACKJ5	0
Y10	SD9	I/O
Y11	DREQ7	I
Y12	SD15	I/O
Y13	EXTSW	I
Y14	XD3	I/O
Y15	XD7	I/O
Y16	THRMJ	Ι
Y17	CRT	1
Y18	GPI2	Ι
Y19	GPI5	I
Y20		-

2.3. ATI 264GT

The *mach64* 3D RAGE[™] (also known as the GT) is a 208-pin VLSI video graphics controller chip with built-in 3D coprocessor, GUI coprocessor, video scaler, color space converter, true-color palette DAC, and dual-clock synthesizer. This controller is 100% register-compatible with the IBM VGA display adapter.

The GT supports synchronous graphics memory chips SDRAM/SGRAM. When combined with the 64-bit memory interface and memory clocks up to 63 MHz, the available bandwidth can reach 800 MB/sec. This increase in memory bandwidth allows for greater display resolutions and uncompromising video playback capabilities. The GT also supports DRAM and EDO DRAM.

Both footprint and pinout of the GT are backward compatible with the ATI-264CT (CT) and ATI-264VT (VT).

2.3.1 Features

2.3.1.1 3D Accelerator

- Complete 3D primitives Points, Lines, Triangles, Trapezoids, and Rectangles
- Full-screen or window double buffering for smooth animation
- Flat and Gouraud shading
- Dithering down from 24 bits per pixel (bpp) to 8 or 16 bpp 3D engine for smaller memory foot print
- Texture mapping
 - Hardware perspective correction
 - Sub-pixel accuracy
 - Mip-mapping
 - Bi-linear and tri-linear filtering
 - Texture maps up to 1024 x 1024
 - Non-square texture maps
 - Alpha in texture map
 - Video textures using YUV format
- 3D effects
 - Alpha blending and alpha interpolation
 - Fogging and fog interpolation

Major Chipsets

- Texture lighting modes
- 3D modes
 - ARGB32 (8:8:8:8)
 - ARGB16 (1:5:5:5)
 - RGB16 (5:6:5)
 - RGB8 (3:3:2)
 - Y8 grey scale
 - ARGB16 (4:4:4:4)
 - YUV444, YUV422

2.3.1.2 2D Accelerator

- Hardware acceleration Rectangle Fill, Line Draw, BitBlt, Polygon Fill, Panning/Scrolling, Bit Masking, Monochrome Expansion, Scissoring, and full ROP support
- Hardware cursor up to 64 x 64 x 2
- Acceleration provided in 4/8/16/24/32-bpp modes. Packed pixel support (24 bpp) enables true color in 1-MB configuration
- Game acceleration for Microsoft's DirectDraw-Double Buffering, Virtual Sprites, Transparent Blit, Masked Blit, and Context Chaining

2.3.1.3 Video Accelerator

- Filtered horizontal and vertical scalers for TV-quality, full-screen video playback
- Integrated video line buffers support filtered video scaling
- Color interpolation during scaling for improved high resolution video quality
- YUV to RGB color space conversion with support for both packed and planar
- Graphics and video keying for effective overlay of video and graphics
- AMC supports I²C interface for special applications (i.e., video tuner control)
- Supports ATI Media Channel (AMC) 1.0 for additional video expansion capabilities
- Support for 26-pin VESA compatible VGA Feature Connector (VFC) with a 1024 x 768 maximum resolution capability

2.3.1.4 General Features

- First graphics controller to integrate 3D, 2D, and Video accelerators with palette DAC and dual-clock synthesizer in a single chip
- 24-bit, true-color palette DAC
 - Supports pixel clock rates to 1280 x 1024 resolution at 75-Hz refresh
 - Gamma correction for true WYSIWYG color
 - Full 24-bit palette
- PCI Revision 2.0 bus for Plug-and-Play ease of use
- Bi-endian support for compliance on a variety of processor platforms
- 32-level command FIFO assures fast response to host command transfers for maximum CPU/host bus/controller efficiency and concurrent operation
- Software interface including:
 - Programmable flat- or paged-memory model with enhanced host access to a linear frame buffer
 - 32-bit wide read/writable memory mapped registers with optimized organization to reduce instruction overhead and raises performance
- DDCI and DDC2B Plug-and-Play monitor support
- Power management for full-VESA Display Power Management Signaling (DPMS) and EPA Energy Star compliance. Also, register support for controller power reduction and DAC power down
- Optional EEPROM for storing user-selectable configurations
- Single-chip solution in 208-pin PQFP package, 0.511m, mixed 3.3V/5.0V
- Supports Fast Page Mode DRAM and EDO DRAM at up to 63 MHz memory clock across a 64-bit memory interface
- 3D driver support
 - Microsoft Direct 3D including support for Reality Lab and OpenGL
 - Apple QuickDraw 3D and TinselTown 3D interface
 - ATI 3D RAGE DOS and Windows API
 - Intel 3DR
- Easy-to-use Windows utilities

Major Chipsets

2.3.2 Block Diagrams

Figure 2-3 ATI 264GT Block Diagrams

2.3.3 Pin Diagram

2.3.4 Signal Descriptions

Table 2- 2Signal Type Definitions

Signal Type	Definition		
0	Output pin		
1/0	Bidirectional pin		
Pwr	Power pin		
Gnd	Ground pin		
A	Analog pins		
#	Active-low signal		

Table 2-3 ATI 264GT Signal Descriptions

Signal	Pin	Туре	Description	
PCI Bus Interface Implementation (for 5V PCI interface support)				
AD[31 :0]	143:150, 153:154, 158:163, 174:181, 185:192	I/O	Multiplexed-System Address or Data bits [31:0]	
C/BE#[3:0]	151,164, 173,184	Ι	Multiplexed-Bus Command or Byte Enable bits 3:0. (BE# is active low)	
CPUCLK	142	-	Bus Clock	
DEVSEL#	169	0	Device Select indicates that the controller has decoded its address.	
FRAME#	165	I	Frame is driven by the current bus master to indicate the beginning and duration of an access.	
IDSEL	152	I	Initialization Device Select is used as a chip select during configuration read and write transactions.	
INTR#	140	0	Interrupt Request-Level is triggered active low by default	
IRDY#	166	Ι	Initiator Ready indicates that the bus master is able to complete the current data phase of the transaction	
PAR	172	0	Parity. Even parity used	
RESET#	141	-	Bus Reset	
STOP#	171	0	Stop indicates the current target is requesting the master to stop the current transaction.	
TRDY#	167	0	Target Ready indicates that the target agent is able to complete the current data phase of the transaction.	
Signal	Pin	Туре	Description	
Memory Interf	ace			
CAS#/WE#0	29	0	Write Strobe of the first and second MB of memory	
CS#3/WE#1	28	0	Write Strobe of the third and fourth MB of memory	
MA[9:0]	204:198, 196, 194:193	0	Memory Address bits 9:0	

MD[31 :0]	55:54, 50:40, 38, 36:30, 24:14,	I/O	Memory Data bits 31:0 of the first and third MB of memory	
MD[63:32]	92:90, 88:80, 77:65, 63, 61:56	I/O	Memory Data bits 63:32 of the second and fourth MB of memory.	
OE#0	205	0	Output Enable of the first and second MB of memory	
OE#1	207	0	Output Enable of the third and fourth MB of memory	
RAS#0	3	0	Row Address Strobe of the first and second MB of memory	
CS#2	206	0	Row Address Strobe of the third and fourth MB of memory	
WE#[7:0]	4:9,11, 13	I/O	Column Address Strobe	
SDRAM Mem	ory 128KBx16x2, aı	nd x32x2		
CAS#/WE# [1 :0]	28,29	0	CAS[1:0]	
MA[9:0]	204:198, 196,194, 193	0	MA[9:0]	
MD[63:0]	92:90, 88:80, 77:65, 63, 61 :54, 50:40, 38, 36:30, 24:14	I/O	AD[63:0]	
OE#1	205	0	WE# Command	
OE#0	207	0	MCLK	
RAS#[1:0]	3, 206	0	RAS[1:0]	
WE#[7:0]	4:9,11, 13	0	DQM[7:0]	
DAC and Mor	nitor Interface			
R	120	А	Red analog pixel data output to monitor	
G	121	А	Green analog pixel data output to monitor	
В	122	А	Blue analog pixel data output to monitor	
COMP	124	А	Compensation pin for the DAC	
HSYNC	129	0	Horizontal sync	
VSYNC	128	0	Vertical sync	
RSET	123	А	Current setting resistor for the DAC	
VREF	125	А	DAC reference voltage	
Frequency Sy	nthesizer Interface			
MLOOP	111	Α	Memory Clock Loop filter	
PLOOP	114	Α	Pixel Clock Loop filter	
XTALIN*	102	А	14.31818-MHz crystal or TTL oscillator connection	
XTALOUT*	103	А	14.31818-MHz crystal connection	

Table 2-3 ATI 264GT Signal Descriptions

^{*} For designs using external clock source (instead of a crystal): the input XTALIN is CMOS inverter with Cjn = 0.5pF, and XTALOUT is not connected.

Optional ATI Media Channel Interface					
BLANK#	135	0	Blank signal		
DCLK	134	0	Pixel Clock output		
EDCLK	107	Ι	Enable Pixel clock		
ESYNC	133	Ι	Enable Sync		
EVIDEO	132	Ι	Enable Pixel data		
PIXEL[7:0]	93:100	0	Pixel data output		
SA#	117	I/O	Serial I/O, Interrupt Request		
137		I/O	Slave not ready		
MASKO	25	I/O	Pixel mask		
Optional EEPF	ROM Interface				
GI01	109	I/O	EEPROM clock		
GI02	116	I/O	EEPROM data I/O		
GI03	136	0	EEPROM chip select		
MD [46:32]	72:65, 63, 61:56	I/O	EPROM address bus		
MD [63:56]	92:90, 88:84	I/O	EPROM data bus		
ROMCS#	113	0	ROM chip select		
Optional EEPF	ROM Interface (Mo	nitor ID for	DDC Support)		
GIO0	108	I/O	DDC serial data		
GI04	138	I/O	DDC serial clock		
Power and Gr	ound Pins				
AVDD	126	PWR	DAC analog power		
AVSS	119	GND	DAC analog ground		
PVDD	110, 115	PWR	PLL power		
PVSS	112	GND	PLL ground		
VCC	10,27, 37,53, 62,78, 127,130, 157,195, 208	PWR	3.3V power		
Power and Gr	ound Pins				
VEE	139,170, 183	PWR	5.0V power		
VSS	1,2,12, 26,39, 51,52, 64,79, 101,105, 106,118, 131,155, 156,168, 182,197	GND	Ground		

Table 2-3 ATI 264GT Signal Descriptions

2.4. μPD481850 SGRAM

The mPD481850 is a synchronous graphics memory (SGRAM) organized as 131,072 words x 32 bits x 2 banks random access port.

This device can operate up to 100 MHz by using synchronous interface. Also, it has 8-column Block Write function to improve capability in graphics system.

This product is packaged in 100-pin plastic QFP (14 20 mm).

2.4.1 Features

- 131,072 words x 32 bits x 2 banks memory
- Synchronous interface (Fully synchronous DRAM with all input signals are latched at rising edge of clock)
 - Pulsed interface
 - Automatic precharge and controlled precharge commands
 - Ping-pong operation between the two internal memory banks
 - Up to 100 MHz operation frequency
- Possible to assert random column address in every cycle
- Dual internal banks controlled by A9 (Bank Address: BA)
- Byte control using DQM0 to DQM3 signals both in read and write cycle
- 8-column Block Write (BW) function
- Persistent write per bit (WPB) function
- Wrap sequence: Sequential
- Programmable burst length (1, 2, 4, 8 and full page)
- Programmable CAS# latency (2 and 3)
- Power Down operation and Clock Suspend operation
- Auto refresh (CBR refresh) or self refresh capability
- Single 3.3 V ± 0.3 V power supply

- LVTTL compatible inputs and outputs
- 100-pin Plastic QFP (14 ´ 20 mm)
- 1,024 refresh cycles/16 ms
- Burst termination by Precharge command
- Burst termination by Burst stop command (in case of full-page burst)

2.4.2 Block Diagram

Figure 2-1 µPD481850 Block Diagram

2.4.3 Pin Diagram

Figure 2-2 µPD481850 Pin Diagram

2.4.4 Signal Descriptions

Table 2- 4µPD481850 Signal Descriptions

Signal	Pin	Туре	Pin Descriptions
CLK	55	Input	CLK is the master clock input. Other inputs signals are referenced to the CLK rising edge.
CKE	54	Input	CKE determine validity of the next CLK (clock). If CKE is high, the next CLK rising edge is valid; otherwise it is invalid. If the CLK rising edge is invalid, the internal clock is not asserted and the μ PD481850 suspends operation.
			When the mPD481850 is not in burst mode and CKE is negated, the device enters power down mode. During power down mode, CKE must remain low.
			In Self refresh mode, low level on this pin is also used as part of the input command to specify Self refresh.
CS#	28	Input	CS# low starts the command input cycle. When CS# is high, commands are ignored but operations continue.
RAS#, CAS#, WE#	27, 62, 25	Input	RAS#, CAS# and WE# have the same symbols on conventional DRAM but different functions. For details, refer to the command table.
DSF	53	Input	DSF is part of the inputs of graphics command of the μ PD481850. If DSF is inactive (Low level), mPD481850 operates as same as SDRAM.
A0 - A8	31-34, 47-50	Input	Row Address is determined by A0 - A8 at the CLK (clock) rising edge in the activate command cycle.
			Column Address is determined by A0 - A7 at the CLK rising edge in the read or write command cycle.
			A8 defines the precharge mode. When A8 is high in the precharge command cycle,
			both banks are precharged; when A8 is low, only the bank selected by A9 is precharged.
			When A8 high in read or write command cycle, the precharge start automatically after the burst access.
A9	29	Input	A9 is the bank address signal (BA). In command cycle, A9 low selects bank A and A9 high selects bank B.
DQM0 - DQM3	23, 56, 24, 57	Input	DQM controls I/O buffers. DQM0 corresponds to the lowest byte (DQ0 to DQ7), DQM1 corresponds to DQ8 to DQ15, DQM2 corresponds to DQ16 to DQ23. DQM3 corresponds to DQ24 to DQ31.
			In read mode, DQM controls the output buffers like a conventional OE pin.
			DQM high and DQM low turn the output buffers off and on, respectively. The DQM latency for the

Signal	Pin	Туре	Pin Descriptions
			read is two clocks.
			In write mode, DQM controls the word mask. Input data is written to the memory cell if DQM is low but not if DQM is high. The DQM latency for the write is zero.
DQ0 - DQ31	Q0 - Q31 97, 98, 100, 1, 3, 4, 6, 7, 60, 61, 63, 64, 68, 69, 71, 72, 9, 10, 12, 13, 17, 18, 20, 21, 74,		DQ pins have the same function as I/O pins on a conventional DRAM. These are normally 32-bit data bus and are used for inputting and outputting data.
75, 77, 78, 80, 80, 83, 84			Function as the mask data input pins in the special register set command. Write operations can be performed after Active command with WPB (old mask data).
			Functions as the column selection data input pin in the block write cycle.
VCC VSS V _{CC} Q V _{SS} Q	15, 35, 65, 97 16, 46, 66, 85 2, 8, 14, 22, 59, 73, 79 5, 11, 19, 62, 70, 76, 82, 99	(Power supply)	VCC and VSS are power supply pins for internal circuits. VCCQ and VSSQ are power supply pins for the output buffers.
N.C.	30, 36-45, 52, 58, 86- 95		Non-connected

Table 2- 4μPD481850 Signal Descriptions

2.5. SMC 37C93xAPM

The SMC 37C93xAPM is an advanced high-performance multi-mode parallel port super I/O floppy disk controller.

2.5.1 Features

- Compatible with ISA Plug-and-Play standard (version 1.0a)
- 8042 keyboard controller
 - 2-K Program ROM
 - 256-byte Data RAM
 - Asynchronous access to two data registers and one status register
 - Supports interrupt and polling access
 - 8-bit timer counter
- Real time clock
 - MC146818 and DS1287 compatible
 - 256 bytes of battery-backed CMOS in two banks of 128 bytes
 - 128 bytes of CMOS RAM lockable in 4 x 32 byte blocks
 - 12 and 24-hour time format
 - Binary and BCD format
 - <1µa standby current (typ)
- Intelligent auto-power management
- 2.88-MB super I/O floppy disk controller
 - Relocatable to 480 different addresses
 - 13 IRQ options
 - Three DMA options
 - Licensed CMOS 765B floppy disk controller
 - Advanced digital data separator
 - Software and register compatible with SMC's proprietary 82077AA compatible core
 - Sophisticated Power Control Circuitry (PCC) including multiple power-down modes for reduced power consumption
 - Game port select logic
 - Directly supports two floppy drives
 - 24-mA AT bus drivers

• Low-power CMOS design

- Licensed CMOS 765B floppy disk controller core
 - Supports vertical recording format
 - 16-byte data FIFO
 - 100% IBM compatibility
 - Detects all overrun and underrun conditions
 - 48-mA drivers and Schmitt Trigger inputs
 - DMA enable logic
 - Data rate and drive control registers
- Enhanced digital data separator
 - Low-cost implementation
 - No filter components required
 - 2-Mbps, 1-Mbps, 500-Kbps, 300-Kbps, 250-Kbps data rates
 - Programmable pre-compensation modes
- Serial ports
 - Relocatable to 480 different addresses
 - 13 IRQ options
 - 2 high-speed NS16C550 Compatible UARTs with send/receive 16-byte FIFOs
 - Programmable baud rate generator
 - Modem control circuitry including 230-K and 460-K baud
 - IrDA, HP-SIR, ASK-IR support
- IDE interface
 - Relocatable to 480 different addresses
 - 13 IRQ options
 - 6 DMA options
 - 2-channel/4-drive support
 - On-chip decode and select logic compatible with IBM PC/XT and PC/AT embedded hard disk drives
- Multi-mode parallel port with ChiProtect
 - Relocatable to 480 different addresses

2.5.2 Block Diagram

Figure 2-6 SMC 37C93xAPM Block Diagram

2.5.3 Pin Diagram

Figure 2-7 SMC 37C93xAPM Pin Diagram

2.5.4 Signal Descriptions

Signal	Pin	Туре	Description		
Host Processor Interfac	e Ce	-	<u>.</u>		
SD0 - SD7	72:79	I/O24	System Data Bus		
SA0 - SA11	41:52	1	System Address Bus		
CS#	53	1	Chip Select / SA12		
AEN	70	1	Address Enable		
IOCHRDY	90	OD24	I/O Channel Ready		
RESET_DRV	80	IS	Reset Drive		
IRQ[1, 3:12, 14, 15]	67:61, 59:54	OD24	Interrupt Requests		
DRQ[0:3]	82,84,86,88	O24	DMA Request		
DACK[0:3]#	81, 83, 85, 87	1	DMA Acknowledge		
ТС	89	1	Terminal Count		
IOR#	68	1	I/O Read		
IOW#	69	1	I/O Write		
16CLK	36	O8SR	16MHz Out		
CLOCKI	22	ICLK	14.318MHz Clock Input		
CLOCK1	37	O8SR	14.318MHz Clock Output 1		
CLOCK2	38	O8SR	14.318MHz Clock Output 2		
CLOCK3	39	O8SR	14.318MHz Clock Output 3		
Floppy Drive Interface		-	<u>-</u>		
RDATA#	17	IS	Read Disk Data		
WGATE#	12	OD48	Write Gate		
WDATA#	11	OD48	Write Data		
HDSEL#	13	OD48	Head Select (1 = side 0)		
DIR#	9	OD48	Direction Control (1 = out)		
STEP#	10	OD48	Step Pulse		
DSKCHG#	18	IS	Disk Change		
DS[0:1]#	5,6	OD48	Drive Select 0, 1		
MTR[0:1]#	7,4	OD48	Motor on Lines		
WPROT#	16	IS	Write Protected		
TR0#	15	IS	Track 00		
INDEX#	14	IS	Index Pulse Input		
DRVDEN[1:0]	3,2	OD48	Drive Density Select [1:0]		
MID[1:0]	19,20	IS	Media ID Inputs		
Serial Port Interface					
RXD1, RXD2	145, 155	1	Receive Data		
TXD1, TXD2	146, 156	O4	Transmit Data		
RTS1#, RTS2#	148, 158	O4	Request to Send		
Serial Port Interface					
CTS1#, CTS2#	149, 159	I	Clear to Send		

Table 2- 5SMC 37C93xAPM Signal Descriptions

Signal	Pin	Туре	Description	
DTR1#, DTR2#	150, 160	O4	Data Terminal Ready	
DSR1#, DSR2#	147, 157	I	Data Set Ready	
DCD1#, DCD2#	152, 154	1	Data Carrier Select	
RI1#, RI2#	151, 153		Ring Indicator	
Parallel Port Interface				
PD0-PD7	138:131	I/OP24	Port Data	
SLCTIN#	140	OD24/OP24	Printer Select	
INIT#	141	OD24/OP24	Initiate Output	
ALF#	143	OD24/OP24	Auto Line Feed	
STB#	144	OD24/OP24	Strobe Signal	
BUSY	128	1	Busy Signal	
ACK#	129	1	Acknowledge Handshake	
PE	127	1	Paper End	
SLCT	126	1	Printer Selected	
ERROR#	142	1	Error at Printer	
IDE				
IDE1_OE#	23	04	IDE1 Enable	
HDCS0#	24	024	IDE1 Chip Select0	
HDCS1#	25	024	IDE1 Chip Select1	
IOROP#	30	024	IOR Output	
IOWOP#	31	024	IOW Output	
A[2:0]	32:34	024	Address [2:0] Output	
IDE1_IRQ	26	1	IDE Interrupt Request	
HDCS2	27	024	IDE2 Chip Select 2 / SA13	
HDCS3	28	024	IDE2 Chip Select 3 / SA14	
IDE2_IRQ	29	1	IDE2 Interrupt Request / SA15	
Real Time Clock				
XTAL1	122	ICLK	32-KHz Crystal Input	
XTAL2	124	OCLK	32-KHz Crystal Output	
Vbat	121		Battery Voltage	
Keyboard / Mouse				
KDAT	91	I/OD16P	Keyboard Data	
KCLK	92	I/OD16P	Keyboard Clock	
MDAT	93	I/OD16P	Mouse Data	
Keyboard / Mouse				
MCLK	94	I/OD16P	Mouse Clock	
Soft Power Management Interface				
PowerOn#	33	I/O24	Power On	

Table 2-5 SMC 37C93xAPM Signal Descriptions
Signal	Pin	Туре	Description		
Button_In	34	I/O24	Button Input		
General Purpose I/O		·			
GP10	96	I/O4	IRQ In		
GP11	97	I/O4	IRQ In		
GP12	98	I/O4	WD Timer Output / IRRX		
GP13	99	I/O24	Power LED Output / IRTX		
GP14	100	I/O4	GPI/O, General Purpose Read Strob		
GP15	102	I/O4	GPI/O, General Purpose Write Strobe		
GP16	103	I/O4	GPI/O, Joystick Read Strobe / JOYC		
GP17	104	I/O4	GPI/O, Joystick Write Strobe		
GP20	105	I/O4	GPI/O, IDE2 Output Enable		
GP21	106	I/O4	GPI/O, Serial EEPROM Data In		
GP22	107	I/O4	GPI/O, Serial EEPROM Data Out		
GP23	108	I/O4	GPI/O, Serial EEPROM Clock		
GP24	109	I/O4	GPI/O, Serial EEPROM Enable		
GP25	110	I/O4	GPI/O, 8042 P21		
BIOS Buffers					
RD[0:7]	111:118	I/O4	ROM Bus (I/O to the SD bus)		
DOMCS#	119	I	ROM Chip Select (only used for ROM)		
ROMOE#	120	I	ROM Output Enable (DIR) (only used for ROM)		
Power					
VCC	21, 60, 101, 125, 139		+ 5V Supply Voltage		
VTR	32		Trickle Voltage Input		
GND↔	1, 8, 40, 71, 95, 123, 130		Ground		

Table 2-5 SMC 37C93xAPM Signal Descriptions

2.5.5 Multifunction Pins with GPI/O and Other Alternate Functions

Pin No.	Original Function	Alternate Function 1	Alternate Function 2	Alternate Function 3	Buffer Type	Default	Index Register	GPI/O
19	MEDIA_ID1	GPI/O			I/O8	Float	GP4	GP40
20	MEDIA_ID0	GPI/O			I/O8	Float	GP4	GP41
23	IDE1_OE#	GPI/O			I/O4	High	GP4	GP42
24	HDCS0#	GPI/O			I/O24	High	GP4	GP43
25	HDCS1#	GPI/O			I/O24	High	GP4	GP44
26	IDE1_IRQ	GPI/O			I/O8	Float	GP4	GP45
30	IOROP#	GPI/O	Power LED Output	WDT	I/O24	Float	GP4	GP46
31	IOWOP#	GPI/O	SMI#		I/O24	Float	GP4	GP47
33	PowerOn#	GPI/O			I/O24	Active low open collector output	GP5	GP51
34	Button_In	GPI/O			I/O24	Input	GP5	GP50
111	RD0	GPI/O	Power LED Output		I/O4	RD0 (1) (4)	GP6	GP60
112	RD1	GPI/O	WDT		I/O4	RD1 (1) (4)	GP6	GP61
113	RD2	GPI/O	8042-P12		I/O4	RD2 (1) (4)	GP6	GP62
114	RD3	GPI/O	8042-P13		I/O4	RD3 (1) (4)	GP6	GP63
115	RD4	GPI/O	8042-P14		I/O4	RD4 (1) (4)	GP6	GP64
116	RD5	GPI/O	8042-P15		I/O4	RD5 (1) (4)	GP6	GP65
117	RD6	GPI/O	8042-P16		I/O4	RD6 (1) (4)	GP6	GP66
118	RD7	GPI/O	8042-P17		I/O4	RD7 (1) (4)	GP6	GP67
119	ROMCS#	GPI/O			I/O8	ROMCS# (1)	GP5	GP53
120	ROMOE#	GPI/O			I/O8	ROMOE# (1)	GP5	GP54
153	R12#	GPI/O			I/O8	Input (2)	GP7	GP70
154	DCD2#	GPI/O			I/O8	Input (2)	GP7	GP71
155	RXD2	GPI/O			I/O8	Input (2)	GP7	GP72
156	TXD2	GPI/O			I/O8	Input (2) (4)	GP7	GP73
157	DSR2#	GPI/O			I/O8	Input (2)	GP7	GP74
158	RTS2#	GPI/O			I/O8	Input (2) (4)	GP7	GP75
159	CTS2#	GPI/O			I/O8	Input (2)	GP7	GP76
160	DTR2#	GPI/O			I/O8	Input (2) (4)	GP7	GP77

 Table 2-6
 Multifunction Pins with GPI/O and Other Alternate Functions

Pin No.	Original Function	Alternate Function 1	Alternate Function 2	Alternate Function 3	Buffer Type	Default	Index Register	GPI/O
27	HDCS2#	SA13			I/O24	Float		
28	HDCS3#	SA14			I/O24	Float		
29	IDE2_IRQ	SA15			1	Float		
53	CS/SA 12#				1	Input		
96	GPI/O	IRQ in			I/O4	Input	GP1	GP10
97	GPI/O	IRQ in	IRQ13		I/O4	Input	GP1	GP11
98	GPI/O	WDT Timer Output/IRR X			I/O4	Input	GP1	GP12
99	GPI/O	Power LED Output/IRTX			I/O24	Input	GP1	GP13
100	GPI/O	GP Address Decode			I/O4	Input	GP1	GP14
102	GPI/O	GP Write Strobe			I/O4	Input	GP1	GP15
103	GPI/O	Joy Read Strobe	JOYCS		I/O4	Input	GP1	GP16
104	GPI/O	Joy Write Strobe			I/O4	Input	GP1	GP17
105	GPI/O	IDE2 Output Enable	8042 P20		I/O4	Input	GP2	GP20
106	GPI/O	Serial EEPROM Data In	AB_DATA		I/O8/ OD8 (EN1)	Input	GP2	GP21
107	GPI/O	Serial EEPROM Data Out	AB_CLK		I/O8/ OD8 (EN1)	Input	GP2	GP22
108	GPI/O	Serial EEPROM Clock			I/O4	Input	GP2	GP23
109	GPI/O	Serial EEPROM Enable			I/O4	Input	GP2	GP24
110	GPI/O	8042 P21			I/O4	Input	GP2	GP25

Table 2- 6Multifunction Pins with GPI/O and Other Alternate Functions

- **Notes (1):** At power-up, RD0-RD7, ROMCS# and ROMOE# function as the XD Bus. To use RD0-RD7 for functions other than the XD Bus, ROMCS# must stay high until the reprogramming of RD0-RD7 is done.
 - (2): These pins are input (high-z) until they are programmed for second serial port.
 - (3): This is the trickle voltage input pin for the FDC37C93XAPM.
 - (4): These pins cannot be programmed as open drain pins in their original function.
 - (5): No pins in their original function can be programmed as inverted input or inverted output.

2.5.6 Buffer Type Descriptions

Table 2-7 SMC 37C935 Buffer Type Descriptions

Buffer Type	Description		
I	Input TTL compatible		
IS	Input with Schmitt Trigger		
I/OD16P	Input/output, 19-mA sink, 90-uA pull-up		
I/O24	Input/output pin. 24-mA sink; 12-mA source		
O4	Output, 4-mA sink; 2.0-mA source		
O8SR	Output, 8-mA sink; 4.0-mA source with Slew Rate Limiting		
O24	Output, 24-mA sink; 12-mA source		
OD24	Output, open drain; 24-mA sink		
OD48	Output, open drain; 48-mA sink		
OD24P	Output, open drain; 24-mA sink, 4-mA source pull up		
OP24	Output; 24-mA sink, 12-mA source		
OCLK	Clock output		
ICLK	Clock input		

P26461 Document Number VS5XA-_97114 Rpr11 8, 1997 [Sheet 27 of

3 4

S - z e

