HOT-661V Pentium™ II processor Based AGP MAIN BOARD User's Manual #### **FCC Notice:** This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy. If not installed and used properly, in strict accordance with the manufacturer's instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: Reorient or relocate the receiving antenna. Increase the separation between the equipment and receiver. Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. Consult the dealer or an experienced radio/television technician for help and for additional suggestions. The user may find the following booklet prepared by the Federal Communications Commission helpful "How to Identify and Resolve Radio-TV Interference Problems." This booklet is available from the U.S. Government Printing Office. Washington, DC 20402, Stock 004-000-00345-4 # **FCC Warning** The user is cautioned that changes or modifications not expressly approved by the manufacturer could void the user's authority to operate this equipment. Note: In order for an installation of this product to maintain compliance with the limits for a Class B device, shielded cables and power cord must be used. #### **CE Notice:** Following standards were applied to this product, in order to achieve compliance with the electromagnetic compatibility: - Immunity in accordance with EN 50082-1: 1992 - Emissions in accordance with EN 55022: 1987 Class B. #### **NOTICE** Copyright 1998. All Right Reserved Manual Ver 1.0 All information, documentation, and specifications contained in this manual are subject to change without prior notification by the manufacturer. The author assumes no responsibility for any errors or omissions which may appear in this document nor does it make a commitment to update the information contained herein. #### **TRADEMARKS** Intel is a registered trademark of Intel Corporation Pentium™ II Processor is a registered trademark of Intel Corporation PC/AT is a registered trademark of International Business Machine Corporation. PS/2 is a registered trademark of IBM Corporation. All other brand and product names referred to in this manual are trademarks or registered trademarks of their respective holders. # T TABLE OF CONTENTS | Preface | 4 | |---|----| | CHAPTER 1 INTRODUCTION | 5 | | Specification | | | Accessories of HOT-661V | 7 | | CHAPTER 2 HARDWARE CONFIGURATION | 8 | | The Pentium II & Celeron Processor | 8 | | What does the RM (Retention Mechanism) consist of | 9 | | Install the Retention Mechanism and Heat Sink Support | | | Install Pentium II Processor | | | Celeron Processor S.E.P.P only RM Assembly Procedure | | | What does Celeron TM Processor RM consist of | | | Install the Celeron TM Processor RM | | | Install Celeron™ Processor | | | Jumpers | | | CPU Clock Speed Selection | | | Clear CMOS - J19 | | | Flash EEPROM Vpp - J17 | | | Connectors | | | Connectors | 20 | | CHAPTER 3 MEMORY CONFIGURATION | 23 | | CHAPTER 4 FLASH UTILITY | 24 | | CHAPTER 5 AWARD BIOS SETUP | 26 | | The Main Menu | 27 | | Standard CMOS Setup | 29 | | BIOS Features Setup | 31 | | Chipset Features Setup | 34 | | Power Management Setup | 37 | | PCI Configuration Setup | | | Integrated Peripherals | | | Password Setting | 46 | HOT-661V mainboard is a highly integrated IBM PC/ATX compatible system board. The design will accept Intel Pentium II processors which features high-performance pipelined burst secondary cache memory support with size of 512KB or 256KB. The memory subsystem is designed to support up to 1024MB SDRAM in standard 168-pin DIMM socket. HOT-661V provides a new level of I/O integration. VIA Apollo Pro chipset provides increased integration and improved performance over other chipset designs. HOT-661V main board provides an AGP slot to support a new generation of graphics cards with ultra-high memory bandwidth. The VIA Apollo Pro chipset provides an integrated Bus Mastering IDE controller with two high performance IDE interfaces for up to four IDE devices. The onboard Giga I/O controller provides the standard PC I/O functions: floppy interface, two FIFO serial ports, an IrDA device port and a SPP/EPP/ECP capable parallel port. Up to four PCI local bus slots provide a high bandwidth data path for data-movement intensive functions such as graphics, and up to three ISA slots complete the I/O function. The HOT-661V provides the foundation for cost effective, high performance, highly expandable platforms, which deliver the latest in Pentium processor and I/O standard. # 1 SPECFICATION The HOT-661V mainboard is carefully designed for the demanding PC user who wants high performance and many intelligent features in a compact package: #### **VIA Chipset:** Features VIA VT82C692BX Apollo Pro with I/O subsystems. #### **CPU Support:** Celeron[™] processors 233/66 ~ 333/66 MHz Pentium II[™] processors 233/66 ~ 333/66 MHz and 350/100 ~ 500/100 MHz #### **Versatile Memory Supports:** Supports four banks of normal or PC/100 SDRAM maximum memory size up to 1024MB Configurable support for EC(Error Checking) and ECC (Error Checking and Correcting) #### **PCI and ISA Expansion Slots:** Provides four 32-bit PCI slots and three 16-bit ISA slots. #### **AGP Slot:** Supports Accelerated Graphics Port cards for high performance, component level interconnect targeted at 3D graphical display applications. #### Onboard GiGA-I/O: Provides one Floppy port; One PS/2 mouse port and one PS/2 Keyboard port; Two 16C550 compatible UARTS serial ports support Infra-red communication and One parallel port supports SPP, EPP and ECP. Serial Port 2 can also be directed from COM2 to the Infrared Module for wireless connections. #### **Onboard PCI Bus Master IDE Controller:** Two Ultra DMA/33 Bus Master IDE Ports supports four IDE devices up to 33 MB/sec IDE transfers and supports Enhanced PIO Modes 3 and 4 and Bus Master IDE DMA Mode 2 devices. #### **Onboard 20-pin ATX Power Supply:** Provides ATX power connector onboard supports soft-on/off function. #### **System BIOS:** Provides licensed Award V4.51PG BIOS on Flash EEPROM. Supports Green PC, DMI and Bundled with NCR SCSI BIOS. #### ACPI: Support ACPI (Advanced Configuration and Power Interface) function. ACPI provide more Energy Saving Features for the future operating system supporting OS Direct Power Management (OSPM) functionality. #### **Board Size:** ATX form factor, dimension 305mm x 170mm #### **Advanced Features:** **Low EMI --** Spread Spectrum built in - $\pm 1.5\%$ modulation and automatic clock shut-off of unused PCI/SDRAMS slots to reduce the EMI. **Dual Function Power Button** -- The system can be one of two states, one is Suspend mode and the other is the Soft-off mode. Pushing the power button for less than 4 seconds will place the system into Suspend mode. When push the power button for more than 4 seconds, the system enters the Soft-off mode. Modem Ring Power-on -- The system will power-on automatically by activating of modem ring. #### More Advanced Features (optional): **Voltages Monitoring** -- System voltages levels are monitored to ensure stable current to main board components. System voltages include V core and VL2 for CPU, and +5V, +12V, -5V, -12V for system. **FAN Status Monitoring** -- To prevent CPU overheat, CPU fan is monitored for RPM and failure. (CPU Cooling FAN with RPM sensor is required) # **ACCESSORIES OF HOT-661V** # 2 HARDWARE CONFIGURATION # **The Pentium II Processor** The Pentium II and Celeron processor is the next member of the P6 processor family. It combines the architectural advances in the Pentium Pro processor with the instruction set extensions of MMX technology. It is fully compatible with the huge base of Intel architecture-based PC software. Additional, the Pentium II processor delivers new levels of performance for advance media and communications software including powerful, realistic graphics and imaging capabilities, video conference, and the ability to run full-screen, full-motion video. The combination of these advanced technologies makes the Pentium II processor the ideal choice foe executing modem 32-bit compute-intensive and multimedia-enhanced application work loads using advanced 32-bit operating systems. The Pentium II and Celeron processor both have a separate, 32KB, on-chip, non-blocking L1 cache which run at the processor frequency, Pentium II processor also has a 512KB or 256KB on-board L2 non-blocking cache runs at half the processor speed. The Pentium II processor using Single Edge Contact (S.E.C.) cartridge packaging technology which enables high volume availability, improved handling protection. The Celeron processor using Single Edge Processor Package. (S.E.P.P.) Figure 2-1 shows the front, rear and top views of Pentium II processor (without heat sink mounted). Figure 2-2 shows the primary and non-primary side of Celeron processor without heat sink mounted and with heat sink mounted. HOT-661V - Page 8 # What does the RM (Retention Mechanism) consist of Pentium II processor requires the Retention Mechanism (RM) and optional Heat Sink Support (HSS) to hold the base processor in the S.E.C. cartridge. Following installation procedure will display how to install these mechanism. Retention Mechanism package consists of 2 separate parts and optional Heat Sink Support consists of 3 separate
parts. Normally, depend on the type of heat sink, Heat Sink Support is not always available. For some heat sink attached on pentium II processor might not fit to install the Heat Sink Support. The introduction of Heat Sink Support installation on this manual only for your reference. ☐ Retention Mechanism (RM) Plastic Guide with captive nuts that hold the S.E.C. Cartridge in the Slot1 connector. (Refer to Figure 2-3) ☐ RM Attach Mount (RMAM) Bolt/Bridge assemblies inserted up through the bottom of the mainboard. Then secures the RM to RMAM (two RMAM required per RM). (Refer to Figure 2-4) Figure 2-4 ☐ Heat Sink Support Base (HSSBASE) Plastic support bar mounted to the mainboard under the ATX heat sink. (Refer to Figure 2-5) ☐ HSS Pin (HSSPIN) Plastic pins inserted through the HSSBASE to secure it to the mainboard (two required per Assembly). (Refer to Figure 2-6) Figure 2-6 ☐ HSS Top Bar (HSSTOP) Plastic bar that clips onto the HSSBASE through the fins on the ATX heat sink. (Refer to Figure 2-7) # **Install the Retention Mechanism and Heat Sink Support** Place the mainboard on a workbench (not in a chassis). Be sure that the mainboard is bare (that is, no SIMMs, cables, or cards are installed). #### Install the Retention Mechanism: - 1. Finds out the Retention Mechanism (RM) Mounting Holes and "Pin 1" mark of Slot 1 on HOT-661V main board. (Refer to Figure 2-8) - 2. Install two Retention Mechanism Attach Mounts (RMAM) with Bolt/Bridge assemblies inserted up through the bottom of the mainboard. (Notice the RMAM's bridge orientation as Figure 2-9) - 3. Insert the Retention Mechanism (RM) around the Slot 1. Be sure the <u>Square Cut</u> <u>Mark</u> of RM (Refer to Figure 2-10) have the same orientation of Slot 1 pin 1.(Refer to Figure 2-9) - 4. Screw the <u>four captive nuts</u> (Refer to Figure 2-10) on the RM by a screw drive to secure RM to two RMANs. Figure 2-8 Figure 2-9 #### Install the Heat Sink Support: Before you install the Heat Sink Support, please check your Pentium II processor, if you have an Intel boxed processor (Refer to Figure 2-11), you can ignore this section. In Intel boxed processor kit, it will includes it's own Heat Sink Support accessories and install manual, you can Install the Heat Sink Support onto the mainboard by following the Intel processor kit's instructions. Figure 2-12 shows the OEM type Pentium II processor with active heat sink. Figure 2-11 Figure 2-12 - 1. Finds out the Heat Sink Support (HSS) Mounting Holes on HOT-661V main board. Notice that one hole is larger than the other hole. (Refer to Figure 2-8) - 2. There are two plastic pegs on the bottom of Heat Sink Support Base (HSSBASE) bar. Mount the two black plastic pegs onto the mainboard. Notice that one hole and the bar of one peg are larger than the other hole and peg. (Refer to Figure 2-13) - 3. Insert the Heat Sink Pins (HSSPIN) through the HSSBASE to secure it to the mainboard. (Refer to Figure 2-13) - 4. Insert the Pentium II into the RM firmly (Please refer to "Install Pentium II processor" section), Slide the Heat Sink Top Bar (HSSTOP) on the supports forward to clip onto the HSSBASE through the fins of Heat Sink. (Refer to Figure 2-14) Figure 2-13 HOT-661V - Page 11 #### **Install Pentium II Processor** Push the latches on the processor toward the center of the processor until they click into place. Hold the processor so that the fan shroud is facing toward the Heat Sink Support Base bar on the mainboard. Slide the processor into the Retention Mechanism. Ensure that the alignment notch in the processor fits over the plug in Slot 1. Push the processor down firmly, with even pressure on both sides of the top, until it is seated. Push the latches on the processor outward until they click into place in the Retention Mechanism. The latches must be secured for proper electrical connection of the processor. Slide the Heat Sink Top Bar (HSSTOP) on the supports forward to clip onto the HSSBASE through the fins of Heat Sink. (Also refer to "Install Heat Sink Support" section) Attach the end of the power cable to the three-pin connector on the mainboard or to the power cord of ATX power supply (depend on power cable type of Fan/Heat Sink). Figure 2-15 # Celeron[™] Processor S.E.P.P. Only Retention Mechanism Assembly Procedures These procedures have been included to help assemble the S.E.P.P. (Single Edge Processor Package) only Retention Mechanism. Please follow them exactly: #### **Required Components** SEPP (Figure 2-16) Heatsink (Figure 2-17) Heatsink Retention Clip (Figure 2-18) Figure 2-17 #### **Procedures** Assemble all parts on a static free bench using proper operator grounding and an ESD mat. Carefully insert all four heatsink clip legs into SEPP. (Figure 2-19) Clip base must be located on the <u>non-primary</u> <u>side</u>.(Figure 2-20) FYI - The side of the clip plate which touches the substrate is covered with a mylar insulator. This insulator prevents the clip from shorting lines on the substrate. Before you fully engage two legs of the clip into the heatsink (Figure 2-21), make sure you remove the blue film covering the thermal interface. The blue film protects the thermal interface from damage during shipping. Grasp the heatsink clip assembly between the clip base and the heatsink. Do not bend or apply pressure directly to SEPP. Using a nonmetallic stock or screw driver, push the remaining two clip legs into the heatsink. **Caution:** Take care not to contact passively or scratch SEPP when using screw driver or bar stock. Verify that all the feet on the clip are fully engaged and seated on the heatsink. (Figure 2-22) Figure 2-21 Figure 2-22 # What does the Celeron™ Processor RM consist of Retention Mechanism for Intel CeleronTM Processor The Intel CeleronTM Processor requires Retention Mechanism (RM) to hold the base processor in the Single Edge Processor Package (S.E.P.P). Contact your supplier for the mechanism. The Retention Mechanism package consists of two separate sets of components. Each set consists of two RM and two RMAM. - ☐ Retention Mechanism (RM) -Two Plastic Guides that hold the S.E.P.P in the Slot 1 connector. (Refer to Figure 2-23) - ☐ RM Attach Mount (RMAM) -Bolt/Bridge assembly inserted up through the . bottom of the mainboard, then secures the RM to RMAM (two RMAM required per RM).(Refer to Figure 2-23) Figure 2-23 # Install the Celeron™ Processor RM Place the mainboard on a workbench (not in a chassis). Be sure that the mainboard is bare (that is, no SIMMs, cables, or cards are installed). - 1. Locate the Retention Mechanism (RM) Mounting Holes of Slot 1 on main board. (Refer to Figure 2-24) - 2. Insert two Retention Mechanisms (RM) face to face on opposite sides of Slot 1. (Refer to Figure 2-24) - 3. Screw the four captive nuts (Refer to Figure 2-24) on the RM with a screw driver to ecure RM to two RMAMs. # Install Celeron™ Processor Hold the processor unit so that the Heat sink faces toward the DIMM sockets on the mainboard. Insert the processor into the Retention Mechanism. Press the processor down firmly with even pressure on both sides of the top until it is seated. (Refer to Figure 2-25 and Figure 2-26) # **Jumpers** Several hardware settings are made through the use of jumper caps to connect jumper pins on the main board. The jumper's pin 1 on main board will be on the top or on the left when holding the main board with the keyboard connector away from yourself. Jumpers with two pins will be shown as for Close (On) and for Open (Off). To connect the pins, simply place a plastic jumper cap over the two pins. # **CPU Clock Speed Selection - JP39 and JP37** HOT-661V featuring CPU Speed Soft-Configure function. The user can adjust CPU Host Clock and CPU Clock Ration from BIOS. When the system power-on first time, BIOS will set CPU clock speed to **233 MHz** or **350 MHz** automatically depend on the CPU type. If your CPU speed higher than 233 MHz or 350 MHz., you only have to entry BIOS to set CPU speed to the higher one. For the practiced user, HOT-661V also provides Hard-Configure function to adjust your CPU Speed. You can adjust your CPU Host Clock on JP39 and adjust your CPU Clock Ratio on JP37 manually. Please refer to next section on next two pages. Soft-Configure CPU Clock from BIOS - 1) Inserting jumper pack on AUTO group of JP37. - 2) Leave jumper JP39 open. Hard-Configure CPU Host Clock and CPU Clock Ratio. - 1) Removing jumper pack from JP37. - 2) Inserting mini jumpers properly on JP37 for desired CPU Clock Ratio. - 3) Inserting mini jumper/s properly on JP39 for desired CPU Host Clock. (Above graphics show to configure CPU Speed to 300 MHz - 66 MHz x 4.5) Figure 2-27 HOT-661V - Page 16 CPU Clock Configuration Table (Table 2-1) shows the Pentium II/Celeron 233 MHz \sim 333 MHz and Pentium II 350 MHz \sim 450 MHz quick setting on the mainboard. Table 2-2 shows adjustable System clock on jumper JP39. Note: JP39 will be not available when jumper group JP37 is set to AUTO. Table 2-3 shows adjustable CPU Clock Ratios on jumper group JP37. # **CPU Configuration Table** | Pentium II
/Celeron
Processor | System
Clock | Multiplier | |-------------------------------------|-----------------|------------| | 233 MHz | 66 MHz | 3.5 | | 266 MHz | 66 MHz | 4 | | 300 MHz | 66 MHz | 4.5 | | 333 MHz | 66 MHz | 5 | | Pentium II
Processor | System
Clock | Multiplier | |-------------------------|-----------------|------------| | 350 MHz | 100 MHz | 3.5 | | 400 MHz | 100 MHz | 4 | | 450 MHz | 100 MHz | 4.5 | | 500 MHz | 100 MHz | 5 | Table 2-1 # **CPU Host Clock Configuration Table** | CPU
Host Clock | JP39
66MHz based
processor | JP39
100MHz based
processor | |----------------------|----------------------------------|-----------------------------------| | 50 MHz | 6 5
2 1 | 6 5
2 1 | | 66 MHz | 6 5
• • • 2 | 6 5
• • • 1 | | 75 MHz | 6 5
2 • • 1 | 6 5
2 • • 1 | | 83 MHz | 6 5
• • • 2 1 | 6 5
• • • 2 1 | | 100 MHz
(Default) | N/A | 6 • •
5
• • • 2 | | 103 MHz | N/A | 6 • • 5 | #### **CPU Clock Ratio** HOT-661V mainboard provides a Jumper group JP37 to set CPU Speed configure by BIOS or by hardware jumper. By inserting jumper pack on AUTO group, the user can Soft-Configure the **CPU Host Clock** and **CPU Clock Ratio** from BIOS. By removeing jumper pack from AUTO group and inserting mini jumpers on MANUAL group properly, the user can configure the CPU Clock Ratio (multiplier) manually. | CPU Clock
Ratio | JP37 | CPU Clock
Ratio | JP37 | |--|----------------|--|-----------------------| | BIOS Setup
2x ~ 5x
(Default) | AUTO MANU JP37 | | | | 2 x
(133 / 66)
(200 / 100) | 8 7 | 4 x
(266 / 66)
(400 / 100) | 8 7 | | 2.5 x
(166 / 66)
(250 / 100) | 8 7 | 4.5 x
(300 / 66)
(450 / 100) | 8 7 | | 3 x
(200/66)
(300/100) | 8 7 | 5 x
(333 / 66)
(500 / 100) | 8 7
0 0 0
0 0 1 | | 3.5 x
(233 / 66)
(350 / 100) | 8 7 | | | Table 2-3 #### **Special Tip for User's Reference Only** HOT-661V mainboard provides a special **Jumper JP45** to overspeed your 66 MHz based Pentium II and Celeron processor to 100 MHz when jumper group JP37 set to MANUAL. Normally, CPU Host Clock 100 ~ 103 MHz are not available for 66 MHz based processor no matter Soft-Configure or Hard-Configure. But, when pull out mini jumper from JP45 (let it open), the user can Hard-Configure your 66 MHz based processor to 100 MHz.based. For example, overspeed your 266 MHz (66 MHz x 4) Celeron to 300 MHz (100 x 3) or more. HOT-661V - Page 18 #### Clear CMOS - JP19 HOT-661V mainboard supports jumper **JP19** for discharging mainboard's CMOS memory. This jumper can clear the CMOS data stored in the Giga I/O chip. To clear the CMOS data please follow listed steps: - 1) Turn off the PC, - 2) Remove mini jumper from JP19 pin 1-2, - 3) Insert mini jumper to JP19 pin 2-3 for a brief while, - 4) Remove mini jumper from JP19 in 2-3, - 5) Reinsert mini jumper to JP19 pin 1-2, - 6) Turn on the PC. # Flash EEPROM Vpp - J17 HOT-661V mainboard supports two types of Flash EEPROM: 5 volt and 12 volt. By setting up jumper J17, the main board can use both 5V or 12V flash EEPROM with new system BIOS files as they come available. Figure 2-29 # Keyboard & PS/2 Mouse Power-On Setting - J44, JP38 HOT-661V mainboard provides an easy power-on function by keyboard and PS/2 mouse. The user may power on system by simply stroke any key (or hot-key) on keyboard or double click PS/2 mouse. (*Note: Power-on by serial mouse is not supported*) JP38 and J44 are jumpers to set the functions of keyboard & PS/2 mouse power-on Enabled or Disabled. When you enabled K/B & PS/2 Mouse Power-ON function, you also have to set the proper item on **POWER ON function** category of **Integrated Peripherals** of BIOS setup. (please refer to page 45) Table 2-4 | K/B & PS/2 Mouse Power-On J44, JP38 | | | | | |--|--------------------------|-----------------------------------|--------------------|--| | Keyboard &
PS/2 Mouse
Power-On
Disabled | 1 4 5 6
00 0
1 2 3 | PS/2 Mouse
Power-On
Enabled | 1 | | | Keyboard &
PS/2 Mouse
Power-On
Enabled | 1 4 5 6
• 1 2 3 | Keyboard
Power-On
Enabled | 1 4 5 6
• 1 2 3 | | # **Connectors** # **Front Panel Connectors** #### **Hardware Reset Connector - J32** Attach 2-pin hardware reset switch to it. Closing the reset switch restarts the system. # **KeyLock Connector - J27** KeyLock & Power LED connector is a 5-pin connector for a lock that may be installed on the system case for enabling or disabling the keyboard. It also attached to the case's Power LED. Pin 1 and 3 are for power LED and pin 4 and 5 are for keylock, pin 2 is empty. # **Speaker Connector - JP24** PC speaker connector may attach a 4-pin PC speaker cable from the case to this connector. Figure 2-30 #### **HD LED Connector - S3** Attach a 2-pin IDE drive LED cable to this connector. The LED lights when an IDE device is active. #### ATX Power On/Off Switch Connector - S1 Attach a 2-pin momentary type switch to this connector for turning on or off your ATX power supply. ## **Back Panel Connectors** #### Figure 2-31 ## **COM1/COM2 Connectors** Attach COM1/COM2 device cables to these connectors. # PS/2 Keyboard & PS/2 Mouse Connector Two 6-pin female PS/2 keyboard & Mouse Connectors is located at the rear of the main board. PS/2 Mouse on top of connector and PS/2 Keyboard on the bottom of connector. Plug the PS/2 keyboard and mouse jack into this connector. #### **Parallel Port Connector** A 25-pin female connector is located at the rear of the main board. Plug the parallel port device cable into this connector. #### **USB1/USB2 Port Connectors** Two female connectors are located at the rear of the board. Plug the USB devices jack into this connector. # **Other Connectors** # **ATX Power Supply Connector - J31** It is a twenty-pin male header connector. Plug the connector from the power directly onto the board connector while making sure the pin 1 is in its position. The main board requires a power supply with at least 200 watts and power good signal. #### **IR Connector - JP4** Infrared device connector may attach a 5-pin infrared device cable to this connector for enabling the infrared transfer function. This mainboard meets the specification of ASKIR and HPSIR. Figure 2-33 shows JP4's pin assignment and Figure 2-35 shows JP4 location. Figure 2-32 3 4 5 Figure 2-33 JP4 vcc vcc i**rra** gn**d ir**tx # CPU, Chassis & AGP cooling Fan connectors - JP29, JP28, J43 & J47 The main board provides three onboard 12V cooling fan power connectors for CPU (JP28 & JP29), Chassis (J43) and AGP device (J47) cooling fan. Depending on the fan maker, the wiring and plug may be different. The red wire should be connected to +12V and black wire should be connected to ground (GND) #### Wake-On-LAN Connector - J45 Attach a 3-pin connector from the LAN card which supports the Wake-On-LAN (WOL) function. This function lets users wake up the connected system through the LAN card. # **Enhanced IDE and Floppy connectors** The main board shipped with one 40-pin ribbon cable for IDE H.D.D , one 34-pin ribbon cable for F.D.D. Ribbon cables should always be connected with the red stripe on the Pin 1 side of the connector. Figure 2-35 # **MEMORY CONFIGURATION** The HOT-661V mainboard provides four 168-pin DIMM sockets that make it possible to install from 8MB up to 512MB of SDRAM. The DIMM socket support 8MB, 16MB, 32MB, 64MB, 128MB and 256MB3.3V single- or double-side SDRAM DIMM. The four DIMM sockets are arranged in four banks of one socket each, Each bank provides a 64/72-bit wide data path. HOT-661V provides optional data integrity features including EC (Error Checking) or ECC (Error Checking and Correcting) in the memory array. EC mode provides single and multiple bit error detection. In ECC mode, during reads from the DRAM, the HOT-661V provides error checking and correction of the data. To support ECC, you must use true (opposed to phantom parity generated by TTL chips) 72-bit parity-type DIMM for all modules. #### Install memory in any or all of the banks in any combination as follows: | DIMM
Socket | Memory Modules | Mudule
Quantity | |----------------|--|--------------------| | DIMM 0 | 8MB, 16MB, 32MB, 64MB, 128MB, 256MB
168-pin 3.3V SDRAM DIMM | x 1 | | DIMM 1 | 8MB, 16MB, 32MB, 64MB, 128MB, 256MB
168-pin 3.3V SDRAM DIMM | x 1 | | DIMM 2 | 8MB, 16MB, 32MB, 64MB, 128MB, 256MB
168-pin 3.3V SDRAM DIMM | x 1 | | DIMM 3 | 8MB, 16MB, 32MB, 64MB, 128MB, 256MB
168-pin 3.3V SDRAM DIMM | x 1 | Table 3-1 # FLASH UTILITY This chapter briefly discusses Award Flash utility in order to guide you through updating your old BIOS. The file name we use to program here is TEST.BIN, and the file name to save old BIOS is 661V.OLD. Please note that those file names are not absolute. They are only examples to let you have a more clear understanding of the updating process. # **How to Begin** - 1. At the DOS command line, type "awdflash" and press the ENTER key to begin the updating process. - 2. Once you enter, you will see a main menu displaying: - 3. Move the cursor to "File Name to Program:" - 4. Type the name of the new BIOS file such as "661V.BIN", and then press the ENTER key. - 5. At the bottom of the menu, you will be requested to answer: "Do You Want to Save BIOS (Y/N)?" The following manual is intended to guide you through the process of both "No" and "Yes" cases respectively. #### If "No" If you do not wish to save the old BIOS: - 1. Please type "N", and then press the ENTER key. - 2. Then you will be requested to answer: "Are You Sure to Program?" 3. Answer "N" if you do not want to program, and then it will exit. #### If "Yes" To save the old BIOS: - 1. Please respond "Y", and then press the ENTER key. - 2. Move the cursor to "File Name to Save: " - 3. Type file name "661V.OLD", and then press the ENTER key. (Your old BIOS will be saved in the file name you create. In this case, the old BIOS is saved in the file name, 661V.OLD). - 4. Then you will be requested to answer: - "Are You Sure to Program (Y/N)?" - 5. Type "Y" to begin programming, and press the ENTER key. - 6. When the programming is finished, the showing message will appear: - 7. Once you see the showing message "Power Off or Reset System", please restart your system. - 8. When you power on the computer again, you will find your old BIOS has already been successfully updated. To view a complete usage of FLASH utility, please type "awdflash /?" and press the ENTER key. ## **Notes About Award Flash Utility** Please note that Award Flash Utility cannot run under **EMM386** or **QEMM**. Thus, when executing the command "awdflash", an error message will appear: "Error Message: Fail — Due to EMM386 or QEMM!" # 5 BIOS
SETUP HOT-661V BIOS ROM has a built-in Setup program that allows users to modify the basic system configuration. This information is stored in battery-backed RAM so that it retains the Setup information when ever the power is turned off. # **Entering Setup** Power on the computer and press immediately will allow you to enter Setup. The other way to enter Setup is to power on the computer, when the below message appear briefly at the bottom of the screen during the POST (Power On Self Test), press key or simultaneously press <Ctrl>,<Alt>, and <Esc> keys. #### "Press DEL to enter SETUP" If the message disappears before you respond and you still wish to enter Setup, restart the system to try again by turning it OFF the ON or pressing the "RESET" button on the system case. You may also restart by simultaneously press <Ctrl>,<Alt>, and <Delete> keys. If you do not press the keys at the correct time and the system does not boot, an error message will be displayed and you will again be asked to, "Press F1 to Continue, DEL To Enter Setup" # ROM PCI/ISA BIOS (2A6LGH29) CMOS SETUP UTILITY AWARD SOFTWARE, INC. | INTEGRATED PERIPHERALS | |---| | SUPERVISOR PASSWORD | | USER PASSWORD | | IDE HDD AUTO DETECTION | | SAVE & EXIT SETUP | | EXIT WITHOUT SAVING | | | | ↑ ↓ → ← : Select Item
(Shift)F2 : Change Color | | | | | | | ### Standard CMOS setup This setup page includes all items in a standard compatible BIOS. #### **BIOS** features setup This setup page includes all items of Award special enhanced features. #### Chipset features setup This setup page includes all items of chipset features. #### **Power Management Setup** This setup page includes all items of Power Management features. #### PnP/PCI Configuration setup This item specifies the value (in units of PCI bus blocks) of the latency timer for the PCI bus master and the IRQ level for PCI device. Power-on with BIOS defaults #### **Load BIOS Defaults** BIOS defaults loads the values required by the System for the maximum performance. However, you can change the parameter through each Setup Menu. #### **Load Setup Defaults** Setup defaults loads the values required by the system for the O.K. performance. However, you can change the parameter through each Setup Menu. #### **Integrated Peripherals** This setup page includes all items of peripheral features. #### Supervisor Password Change, set, or disable supervisor password. It allows you to limit access to the system and Setup, or just to Setup. #### **User Password** Change, set, or disable user password. It allows you to limit access to the system and Setup, or just to Setup. # **IDE HDD auto detection** Automatically configure IDE hard disk drive parameters. #### Save & Exit setup Save CMOS value change to CMOS and exit setup # **Exit without saving** Abandon all CMOS value changes and exit setup. ROM PCI/ISA BIOS (2A6LGH29) STANDARD CMOS SETUP AWARD SOFTWARE, INC. | HARD DISKS | TYPE | SIZE | CYLS | HEAD | PRECOMP | LANDZ | SECTOR | MODE | |-------------------|---------|------|------|------|---------|--------|--------|------| | Primary Master | : Auto | 0 | 0 | 0 | 0 | 0 | 0 | AUTO | | Primary Slave | : Auto | 0 | 0 | 0 | 0 | 9 | 0 | AUTO | | Secondary Master | : Auto | 0 | 0 | 0 | 0 | 0 | 0 | AUTO | | Secondary Slave | : Auto | 0 | 0 | 0 | 0 | 0 | 0 | AUTO | | Drive A : 1.44M, | 3.5 in. | | | | | | | | | Drive B : None | | | | | Base | Memory | : 0 |)K | | | | | | E | xtended | Memory | : 0 |)K | | Video : EGA/VGA | | | | | Other | Memory | 512 | 2K | | Halt On : All Err | ors | | | _ | | | | - | | | | | | | Total | Memory | 512 | 2K | #### **Date** The date format is <day>, <month> <date> <year>. Press <F3> to show the calendar. #### Time The time format is <hour> <minute> <second>. The time is calculated base on the 24-hour military-time clock. For example. 5 p.m. is 17:00:00. #### **Hard Disks Type** This item identify the types of hard disk drives that has been installed in the computer. There are 46 predefined types and a user definable type. Press PgUp or PgDn to select a numbered hard disk type or type the number and press <Enter>. Note that the specifications of your drive must match with the drive table. The hard disk will not work properly if you enter improper information for this item. If your hard disk drive type is not matched or listed, you can use Type User to define your own drive type manually. If you select Type User, related information is asked to be entered to the following items. Enter the information directly from the keyboard and press <Enter>. Those information should be provided in the documentation from your hard disk vendor or the system manufacturer. The user may also set those items to AUTO to auto configure hard disk drives parameter when system power-on. If a hard disk drive has not been installed select NONE and press <Enter>. #### Drive A type/Drive B type This item specifies the types of floppy disk drive A or drive B that has been installed in the system. #### Video This item selects the type of adapter used for the primary system monitor that must matches your video display card and monitor. Although secondary monitors are supported, you do not have to select the type in Setup. #### **Error halt** This item determines if the system will stop, when an error is detected during power up. #### Memory This item is display-only. It is automatically detected by POST (Power On Self Test) of the BIOS. #### **Base Memory** The POST of the BIOS will determine the amount of base (or conventional) memory installed in the system. The value of the base memory is typically 512K for systems with 512K memory installed on the mainboard, or 640K for systems with 640K or more memory installed on the mainboard. #### **Extended Memory** The BIOS determines how much extended memory is present during the POST. This is the amount of memory located above 1MB in the CPU's memory address map. #### ROM PCI/ISA BIOS (2A6LGH29) BIOS FEATURES SETUP AWARD SOFTWARE, INC. | | | T T | |----------------------------|------------|-----------------------------------| | Virus Warning | : Disabled | Video BIOS Shadow : Enabled | | CPU Internal Cache | : Enabled | C8000-CBFFF Shadow : Disabled | | External Cache | : Enabled | CC000-CFFFF Shadow : Disabled | | CPU L2 Cache ECC Checking | : Enabled | D0000-D3FFF Shadow : Disabled | | Quick Power On Self Test | : Enabled | D4000-D7FFF Shadow : Disabled | | Boot Sequence | : A,C,SCSI | D8000-DBFFF Shadow : Disabled | | Swap Floppy Drive | : Disabled | DC000-DFFFF Shadow : Disabled | | Boot Up Floppy Seek | : Enabled | | | Boot Up NumLock Status | | | | Gate A20 Option | : Normal | | | Memory Parity/ECC Check | : Enabled | | | Typematic Rate Setting | | | | Tupematic Rate (Chars/Sec) | : 6 | | | Tupematic Delay (Msec) | : 250 | | | Security Option | : Setup | | | | • | ESC : Quit ↑↓→← : Select Item | | PCI/VGA Palette Snoop | : Disabled | F1 : Help PU/PD/+/- : Modify | | OS Select For DRAM > 64MB | : Non-OS2 | F5 : Old Values (Shift)F2 : Color | | | | F6 : Load BIOS Defaults | | | | F7 : Load Setup Defaults | #### **Virus Warning** When this item is enabled, the Award BIOS will monitor the boot sector and partition table of the hard disk drive for any attempt at modification. If an attempt it made, the BIOS will halt the system and the following error message will appear. Afterwards, if necessary, you will be able to run an anti-virus program to locate and remove the problem before any damage is done. ``` !WARNING! Disk boot sector is to be modified Type "Y" to accept write or "N" to abort write Award Software, Inc. ``` #### **CPU Internal Cache** This item enables CPU internal cache to speed up memory access. #### **External Cache** This item enables CPU secondaryl cache to speed up memory access. #### **Quick Power On Self Test** This item speeds up Power On Self Test (POST) after you power on the computer. If it is set to Enabled, BIOS will shorten or skip some check items during POST. #### **Boot Sequence** This item determines which drive computer searches first for the disk operating system. Default setting is A, C, SCSI. BIOS also support system boot from CD-ROM drive or SCSI hard disk drive. #### **Swap Floppy Drive** When this item enables, the BIOS will swap floppy drive assignments so that Drive A: will function as Drive B: and Drive B: as Drive A:. #### **Boot Up Floppy Seek** During POST, BIOS will determine if the floppy disk drive installed is 40 or 80 tracks. #### **Boot Up NumLock Status** When this option enables, BIOS turns on *Num Lock* when system is powered on. #### Gate A20 Option This entry allows you to select how the gate A20 is handled. The gate A20 is a device used to address memory above 1 MByte. Initially, the gate A20 was handled via a pin on the keyboard. Today, while keyboards still provide this support, it is more common, and much faster, set to Fast for the system chipset to provide support for gate A20. #### **Memory Parity/ECC Check** This item allows you to set memory error checking, Enabled or Disabled. #### **Typematic Rate Setting** This determines if the typematic rate is to be used. when disabled, continually holding down a key on your keyboard will generate only one instance. In other words, the BIOS will only report that the key is down. When the typematic rate is enabled, the BIOS will report as before, but it will then wait a moment, and, if the key is still down, it will begin the report that the key has been depressed repeatedly. For example, you would use such a feature to accelerate cursor movements with the arrow keys. #### Typematic Rate (Chars/Sec) When the typematic rate is enabled, this selection allows you select the rate at which the kevs are accelerated. #### Typematic Delay (Msec) When the typematic rate is enabled, this selection allows you to select the delay between when the key was first depressed and when the acceleration begins #### **Security
Option** This item allows you to limit access to the System and Setup, or just to Setup. When *System* is selected, the System will not boot and access to Setup will be denied if the correct password is not entered at the prompt. When *Setup* is selected, the System will boot, but access to Setup will be denied if the correct password is not entered at the prompt. #### PCI/0VGA Palette Snoop This item must be set to enabled if there is a MPEG ISA card installed in the system, and disabled if there is no MPEG ISA card installed in the system. #### OS Select For DRAM > 64MB This item allows you to access the memory that over 64 MB in OS/2. #### **Video BIOS Shadow** Determines whether video BIOS will be copied to RAM. However, it is optional depending on chipset design. Video Shadow will increase the video speed. ## C8000-CBFFF Shadow/DC000-DFFFF Shadow These categories determine whether option ROMs will be copied to RAM. An example of such option ROM would be support of on-board SCSI. ### **Chipset Features Setup** #### ROM PCI/ISA BIOS (2A6LGH29) CMOS SETUP UTILITY CHIPSET FEATURES SETUP | Bank 0/1 DRAM Timing : Normal Bank 2/3 DRAM Timing : Normal Bank 4/5 DRAM Timing : Normal Bank 6/7 DRAM Timing : Normal SDRAM Cycle Length : 2 DRAM Clock : Host CLK Memory Hole : Disabled Read Around write : Disabled Concurrent PCI/Host : Disabled Video RAM Cacheable : Disabled AGP Aperture Size : 64M AGP-2X Mode : Enabled OnChip USB : Disabled | CPU Warning Temperature : Disabled Current System Temp. : XX°C/XX°F Current CPU1 Temperature : XX°C/XX°F Current CPUFAN1 Speed : XXXXRPM Current CPUFAN2 Speed : XXXXRPM Ucore : XX.XV Ucore : XX.XV Uio : XX.XV + 5 U : XX.XV + 12 U : XX.XV - 12 U : -XX.XV - 5 U : -XX.XV Shutdown Temperature : 60°C/140°F | |--|--| | Auto Detect DIMM/PCI Clk: Disabled Spread Spectrum Modulated: Disabled CPU Host Clock : 100 MHz CPU Clock Ratio : x3.5 CPU Speed : 350 MHz | ESC : Quit ↑↓→← : Select Item F1 : Help PU/PD/+/- : Modify F5 : Old Values (Shift)F2 : Color F6 : Load BIOS Defaults F7 : Load Setup Defaults | #### Bank x/x DRAM Timing This value in this field is set by the system board manufacturer, depending on whether the board has paged DRAMS or EDO DRAMS. The choice: 70ns, 60ns. #### **SDRAM Cycle Length** This field allows you to set the SDRAM latency timer. The Choice: 2,3. #### **DRAM Clock** This item set the DRAM Read/Write timings that the system uses. #### **Memory Hole** In order to improve performance, some space in memory can be reserved for ISA cards. #### **Read Around write** This is a new cache technology for the video memory of the processor. It can greatly improve the display speed by caching the display data. You must leave this on the default setting of *Disabled* if your display card cannot support this feature or else your system may not boot. #### **Concurrent PCI/Host** This item disable CPU bus will be occupited during the entire PCI operation period. #### **Video RAM Cacheable** When enabled. The Video RAM cache will cause access to video RAM addressed at C0000H to C7FFFH to be cached, if the cache controller is also enabled. #### AGP Aperture Size (MB) This item allows the user to set memory-mapped, graphics data structures can reside in Graphics Aperture. #### **AGP-2X Mode** This item allows you to enable/disable AGP-2X function. See www.apgforum.org for AGP information. #### **OnChip USB** Select Enabled if your system contains a Universal Serial Bus (USB) controller and you have a USB peripheral. #### Auto Detect DIMM/PCI CIk Enabling this item allosw system auto detect and close clock signal to empty DIMM/PCI slot to reduce EMI. #### Spread Spectrum Modulated This item allows the user to enable Spread Spectrum Modulated to reduce the EMI. #### **CPU Host Clock** This item allows the user to adjust CPU Host Bus Clock from BIOS when JP37 is set to Auto. The user may adjust CPU Host Clock from 50 MHz to 83 MHz when 66 MHz based Pentium II or Celeron processor is used, or from 100 MHz to 112 MHz when 100 MHz based Pentium II processor is used. This item will not show up when JP37 is set to Manual. #### **CPU Clock Ratio** This item allows the user to adjust CPU Host Clock/Internal Clock ration when JP37 is set to Auto. The user may adjust CPU Clock Ratio from x2 to x5. This item will not show up when JP37 is set to Manual. #### **CPU Speed** This item is show only. when CPU Host Clock and CPU Clock Ratio is set, the result will be display on this item. #### **Current System Temperature (optional)** Since the mainboard support System and CPU temperature monitoring and overheat alert. This item indicate the current main board temperature. ### Current CPU1 Temperature (optional) Since the mainboard support System and CPU temperature monitoring and overheat alert. This item indicate the current Processor temperature. #### Current CPUFAN1/2 Speed(optional) The mainboard can detect two fans rotation speed for CPU cooler and system. CPUFAN1 indicate the CPU cooling fan's rotation speed which inserting on JP28 and CPUFAN2 indicate cooling fans rotation speed which inserting on JP29. ### $INO(V) \sim IN2(V)$, +5V ~ -5V (optional) The mainboard support CPU and mainboard voltages monitoring. The onboard hardware monitor is able to detect the voltages output of the voltage regulators and power supply. # ROM PCI/ISA BIOS (2A6LGH29) POWER MANAGEMENT SETUP AWARD SOFTWARE, INC. | ACPI function : Disabled Power Management : User Define PM Control by APM : Yes Video Off Option : Suspend -> Off Video Off Method : V/H SYNC+Blank MODEM Use IRQ : 3 Soft-Off by PWRBTN : Instant-Off *** PM Timers ** HDD Power Down : Disable Doze Mode : Disable Suspend Mode : Disable *** PM Events ** | Primary INTR : ON IRQ3 (COM 2) : Primary IRQ4 (COM 1) : Primary IRQ5 (LPT 2) : Primary IRQ6 (Floppy Disk): Primary IRQ7 (LPT 1) : Primary IRQ8 (RTC Alarm) : Disabled IRQ9 (IRQ2 Redir) : Secondary IRQ10 (Reserved) : Secondary IRQ11 (Reserved) : Secondary IRQ12 (PS/2 Mouse) : Primary IRQ13 (Coprocessor): Disabled | |--|--| | | | | | | | 111 111111111 | | | | | | Doze Mode : Disable | | | Suspend Mode : Disable | IRQ12 (PS/2 Mouse) : Primary | | ** PM Events ** | IRQ13 (Coprocessor): Disabled | | VGA : OFF | IRQ14 (Hard Disk) : Primary | | VGA : OFF
LPT & COM : LPT/COM | IRQ15 (Reserved) : Disabled | | HDD & FDD : ON | - | | Wake Up On LAN : Disabled | ESC : Quit ↑↓→← : Select Item | | Modem Ring Resume : Disabled | F1 : Help PU/PD/+/- : Modify | | RTC Alarm Resume : Disabled | F5 : Old Values (Shift)F2 : Color | | | F6 : Load BIOS Defaults | | | F7 : Load Setup Defaults | | IL . | | #### **ACPI Function** This item determine to support ACPI function or not. #### **Power Management** This item determines the options of the power management function. *Max Saving* puts the system into power saving mode after a brief period of system inactivity; *Min Saving* is the same as *Max Saving* except the time of the system inactivity period is longer; *Disabled* disables the power saving feature; *User Defined* allows you to set power saving options according to your preference. #### PM Control by APM If this item set to *No*, system BIOS will be ignored and APM calls the power to manage the system. If this item setup to *Yes*, system BIOS will wait for APM's prompt before it enter any PM mode e.g. *DOZE*, *STANDBY* or *SUSPEND*. #### **Video Off Option** When enabled, this features allows the VGA adapter to operate in a power saving mode. Always On: Monitor will remain on during power saving modes. Suspend --> Off: Monitor blanked when the systems enters the Suspend mode. Susp, Stby --> Off: Monitor blanked when the system enters either Suspend or Standby modes. All Modes --> Off: Monitor blanked when the system enters any power saving mode. #### **Video Off Method** This item define the video off features - V/H SYNC+Blank, DPMS, and Blank Only. The first option, which is the default setting, blanks the screen and turns off vertical and horizontal scanning; DPMS allows the BIOS to control the video display card if it supports the DPMS feature; Blank Screen only blanks the screen. #### **MODEM Use IRQ** This item determines the IRQ in which the MODEM can use. The choice: 1, 3, 4, 5, 7, 9, 10, 11, N/A. #### Soft-Off by PWRBTN When Enabled, turning the system off with the on/off button places the system in a very low-power-usage state, with only enough circuitry receiving power to detect power button activity or Resume by Ring activity. #### **HDD Power Down** When enabled and after the set time of system inactivity, the hard disk drive will be powered down while all other devices remain active. #### **Doze Mode** When enabled and after the set time of
system inactivity, the CPU clock will run at slower speed while all other devices still operate at full speed. #### **Suspend Mode** When enabled and after the set time of system inactivity, all devices except the CPU will be shut off. #### ** PM Events ** PM events are I/O events whose occurrence can prevent the system from entering a power saving mode or can awaken the system from such a mode. In effect, the system remains alert for anything occurs to a device whidch is configured as *On*, even when the system is a power down mode. #### **VGA** When set to *On* (default), any event occurring at a VGA port will awaken a system which has been powered down. #### LPT & COM When set to *LPT/COM* (default), any event occurring at a COM (Serial)/LPT port will awaken a system which has been powered down. #### HDD & FDD When set to On (default), any event occurring at a hard or floppy drive port will awaken a system which has been powered down. #### Wake Up On LAN This item determine the system will resume by activity of LAN. If enabled this feature system will power-on itself from power off when the activity of LAN. #### **Modem Ring Resume** When set to Enagled, any event occurring Modem Ring/activity of LAN will awaken a system which has been powered down. #### **RTC Alarm Resume** When set to Enabled RTC Alarm Resume, you could set the date (of month) and timer (hh:mm:ss), any event occurring at RTC will awaken system which has been powered down. #### **Primary INTR** When set to On (default), any event occurring at will awaken a system which has been powered down. The following is a list of IRQ, Interrupt ReQuests, which can be exampled much as the COM ports and LPT port above can. When an I/O device wants to gain the attention of the operating system, it signals this by causing an IRQ to occur. When the operation system is ready to respond to the request, it interrupts itself and performs the service. As above, the choices are *On* and *Off*. When set On, activity will neither prevent the system from going into a power management mode nor awaken it. - IRQ3 (COM 2) - IRQ4 (COM 1) - IRQ5 (LPT 2) - IRQ6 (Floppy Disk) - IRQ7 (LPT 1) - IRQ8 (RTC Alarm) - IRQ9 (IRQ2 Redir) - IRQ10 (Reserved) - IRQ11 (Reserved) - IRQ12 (PS/2 Mouse) - IRQ13 (Coprocessor) - IRQ14 (Hard Disk) - IRQ15 (Reserved) #### ROM PCI/ISA BIOS (2A6LGH29) PNP/PCI CONFIGURATION AWARD SOFTWARE, INC. PNP OS Installed CPU to PCI Write Buffer : Enabled : No Resources Controlled By Auto PCI Dunamic Bursting Disabled PCI Master 0 WS Write Reset Configuration Data : Disabled Enabled PCI Delay Transaction Disabled PCI#2 Access #1 Retry Disabled AGP Master 1 WS Write AGP Master 1 WS Read Disabled Disabled PCI Latency Timer(CLK) : Level PCI IRQ Actived By Assign IRQ For USB : Enabled Assign IRQ For VGA Disabled Assign IRQ For ACPI : IRQ10 MS IRQ Routing Table : Disabled **ESC** : Quit ↑↓→← : Select Item Help PU/PD/+/-Modifu F 1 Old Values (Shift)F2 : Color F5 Load BIOS Defaults F6 Load Setup Defaults #### **PNP OS Installed** When this item is set to Yes, it will allow the PnP OS(Windows 95) control the system resources except PCI devices and PnP boot devices. Default setting is *No*. #### **Resources Controlled By** The Award Plug and Play BIOS has the capability to automatically configure all of the boot and Plug and Play compatible devices. However, this capability means absolutely nothing unless you are using a Plug and Play operating system as Windows 95. #### **Reset Configuration Data** This item allows you to determine whether to reset the configuration data or not. #### IRQ 3/4/5/7/9/10/11/12/14/15, assigned to These items allow you to determine the IRQ assigned to the ISA bus and is not available for PCI slot. Choices are *Legacy ISA* and *PCI/ISA PnP*. #### DMA 0/1/3/5/6/7 assigned to These items allow you to determine the DMA assigned to the ISA bus and is not available for PCI slot. Choices are *Legacy ISA* and *PCI/ISA PnP*. #### **CPU to PCI Write Buffer** When enabled, up to four Dwords of data can be written to the PCI bus without interrupting the CPU. When disabled, a write buffer is not used and the CPU read cycle will not be completed until the PCI bus signals that it is ready to receive the data. #### **PCI Dynamic Bursting** When Enabled, data transfers on the PCI bus, where possible, make use of the high-performance PCI burst protocol, in which greater amounts of data are transferred at a single command. The choice: Enabled, Disabled. #### **PCI Master 0 WS Write** When Enabled, writes to the PCI bus are command with zero wait states. The choice: Enabled, Disabled. #### **PCI Delay Transaction** The chipset has an embedded 32-bit posted write buffer to support delay transactions cycles. Select Enabled to support compliance with PCI specification version 2.1. The choice: Enabled, Disabled. #### PCI #2 Access #1 Retry This item allows you enable/disable the PCI #2 Access #1 Retry. The choice: Enabled, Disabled. #### **AGP Master 1 WS Write** This implements a single delay when sriting to the AGP Bus. By default, two-wait states are used by the system, allowing for greater stability. The choice: Enabled, Disabled. #### **AGP Master 1 WS Read** This implements a single delay when reading from the AGP Bus. By default, two-wait states are used by the system, allowing for greater stability. The choice: Enabled, Disabled. #### PCI Latency Timer (CLK) The number of clocks programed in the PCI Latency Timer represents the guaranteed time slice allocated to the 82C598AT, after which it must complete the current data transfer phase and surrender the bus as soon as its bus grant is removed. The PCI Latency Timer is used to guarantee to the PCI agents a minimum amount of the system resource. #### PCI IRQ Activated by This item sets the method by which the PCI bus recognize that an IRQ service is being requested by a device. You should never change the default configuration unless advised otherwise by your System's manufacturer. Choices are *Level*(default) and *Edge*. #### **Assign IRQ For USB** This item allows the user to assign IRQ to on-board USB controller or not. Since on-board controller is enabled always, if none of IRQ is assigned to it, there will be a question mark report on system device under windows 95. ## **Assign IRQ For VGA** This item allows the user to set VGA IRQ Routing table Enabled or Disabled. # **Assign IRQ For ACPI** This item allows the user to set ACPI IRQ Routing table Enabled or Disabled. ## **MS IRQ Routing Table** This item allows the user to set BIOS IRQ Routing Table Enabled or Disabled. ### **Integrated Peripherals** ROM PCI/ISA BIOS (2A6LGH29) INTEGRATED PERIPHERALS AWARD SOFTWARE, INC. OnChip IDE Channel0: Enabled UR2 Duplex Mode : Half OnChip IDE Channel1: Enabled Onboard Parallel Port : 378/IRQ7 Parallel Port Mode IDE Prefetch Mode Disabled SPP IDE HDD Block Mode 3 : Disabled ECP Mode Use DMA PIO: Auto Primary Master Primary Slave PTO: Auto Secondary Master PIO: Auto Secondary Slave PIO: Auto UDMA: Disable Primary Master Primary Slave UDMA: Disable Secondary MasterUDMA: Disable Secondary Slave UDMA: Disable Init Display First : PCI Slot POWER ON Function : BUTTON ONLY Hot Key Power ON : Ctrl-F1 KBC input clock : 8 MHz ESC : Quit ↑↓→← : Select Item Onboard FDC Controller: Enabled Help PU/PD/+/- : Modify F1 Onboard Serial Port 1 : Auto Onboard Serial Port 2 : Auto Old Values (Shift)F2 : Color F5 Onboard Serial Port 2 Load BIOS Defaults F6 : Load Setup Defaults UR2 Mode : Standard #### OnChip IDE Channel0 This item is used to defined on chip Primary PCI IDE controller is Enable or Disable setting. #### OnChip IDE Channel1 This item is used to defined on chip secondary PCI IDE controller is Enable or Disable setting. #### **IDE Prefetch Mode** Enable prefetching for IDE drive interfaces that support its faster drive accesses. If you are getting disk drive errors, change the setting to omit the drive interface where the errors occur. Depending on the configuration of your IDE subsystem, this field may not appear, and it does not appear when the Internal PCI/IDE field, above, is Disabled. The choice: Enabled, Disabled. #### **IDE HDD Block Mode** This item is used to set IDE HDD Block Mode. If your IDE Hard Disk supports block mode, then you can enable this function to speed up the HDD access time. If not, please disable this function to avoid HDD access error. #### **Primary Master/Slave PIO** In this items, there are five modes defined in manual mode and one automatic mode. There are 0, 1, 2, 3, 4, and AUTO is the default settings for on board Primary Master/Slave PIO timing. #### **Secondary Master/Slave PIO** In this items, there are five modes defined in manual mode and one automatic mode. There are 0, 1, 2, 3, 4, and AUTO is the default settings for on board Secondary Master/Slave PIO timing. #### **Primary Master/Slave UDMA** On this mainboard, VIA Apollo Pro PCIset improves IDE transfer rate using Bus Master UltraDMA/33 IDE which can handle data transfer up to 33MB/sec. The options are *Disabled, Enabled and Auto, Auto* is the default settings for on board Primary Master/ Slave *UltraDMA33*. Note: Your hard drive must also support UDMA for this feature to work. #### Secondary Master/Slave UDMA On this mainboard, VIA Apollo Pro PCIset improves IDE transfer rate using Bus Master UltraDMA/33 IDE which can handle data transfer up to 33MB/sec. The options are *Disabled, Enabled and Auto, Auto* is the default settings for on board Secondary Master/Slave *UltraDMA33*. Note: Your hard drive must also support UDMA for this feature to work. #### **Initial Display First** This item is used to determine initial device when system power on. The options are *PCI* and *AGP*. #### **POWER ON Function** This item is used to defined Keyboard & PS/2 mouse power-on function enabled or disabled. The options are **Button Only**, **HOT-Key** and **PS/2 Mouse**. Button Only - Only soft-on/off button on the front panel is available.
Hot-Key - Power-on by soft-on/off button and keyboard are available. The user may set power-on hot-key from <Ctrl><F1> to <Ctrl><F12>. PS/2 Mouse - Powre-on by soft-on/off button and PS/2 Mouse are available. Note:1. When item of PS/2 Mouse or HOT-Key is selected, please also adjust jumper JP38 to the proper position. (please refer to page 15) 2. USB keyboard, USB Mouse and Serial Mouse are not supported to this function. #### **Hot Key Power ON** Power-on by soft-on/off button and keyboard are available. #### **KBC Input Clock** This item to set the input clock to onboard keyboard controller. The options are 8MHz and 12MHz. #### Onboard FDC Control This item specifies onboard floppy disk drive controller. This setting allows you to connect your floppy disk drives to the onboard floppy connector. Choose the " *Disabled*" settings if you have a separate control card. #### **Onboard Serial Port 1** This item is used to define onboard serial port 1 to 3F8/IRQ4, 2F8/IRQ3, 3E8/IRQ4, 2E8/IRQ3, Auto or Disabled. #### **Onboard Serial Port 2** This item is used to define onboard serial port 2 to 3F8/IRQ4, 2F8/IRQ3, 3E8/IRQ4, 2E8/IRQ3, Auto or Disabled. #### **UR2 Mode** The main board support IrDA(HPSIR) and Amplitudes Shift Keyed IR(ASKIR) infrared through COM 2 port. This item specifies onboard Infra Red mode to *IrDA 1.0, ASKIR, MIR 0.57M, MIR 1.15M, FIR* or *Standard (Disabled)*. Note: FIR is not available currently. #### **UR2 Duplex Mode** This item specifies onboard infrared transfer mode to *full-duplex* or *half-duplex*. *This* item will not show up when IrDA, ASKIR, or MIR UR2 modes are selected. #### **Onboard Parallel Port** This item specifies onboard parallel port address to 378H, 278H, 3BCH or Disabled. ## Parallel Port Mode This item specifies onboard parallel port mode. The options are *SPP* (Standard Parallel Port), *EPP*(Enhanced Parallel Port), *ECP* (Extended Capabilities Port), and *EPP+ECP*. #### **ECP Mode Use DMA** This item specifies *DMA* (Direct Memory Access) channel when ECP device is in use. The options are *DMA 1* and *DMA 3*. This item will not show up when SPP and EPP printer mode is selected. # **Password Setting** This section describes the two access modes that can be set using the options found on the Supervisor Password and User Password. ROM PCI/ISA BIOS (2A59GH2B) CMOS SETUP UTILITY AWARD SOFTWARE, INC. | STANDARD CMOS SETUP | INTEGRATED PERIPHERALS | |---------------------------------------|---| | BIOS FEATURES SETUP | IDE HDD AUTO DETECTION | | CHIPSET FEATURES SETUP | SUPERVISOR PASSWORD | | POWER MANAGEMENT SETUP | USER PASSWORD | | PNP/PCI CONFIGURATION | SAVE & EXIT SETUP | | LOAD BIOS DEFAULTS Enter Password | : UT SAVING | | LOAD SETUP DEFAULTS | | | Esc : Quit
F10 : Save & Exit Setup | ↑ ↓ → ← : Select Item
(Shift)F2 : Change Color | | Change/Set/Disable Password | | #### Supervisor Password and User Password The options on the Password screen menu make it possible to restrict access to the Setup program by enabling you to set passwords for two different access modes: Supervisor mode and User mode. In general, Supervisor mode has full access to the Setup options, whereas User mode has restricted access to the options. By setting separate Supervisor and User password, a system supervisor can limit who can change critical Setup values. #### **Enter Password** Type the password, up to eight characters, and press <Enter>. The password typed now will clear any previously entered password from CMOS memory. You will be asked to confirm the password. Type the password again and press <Enter>. You may also press <Esc> to abort the selection and not enter a password. To disable password, just press <Enter> when you are prompted to enter password. A message will confirm the password being disabled. Once the password is disabled, the system will boot and you can enter Setup freely. #### **Password Disable** If you select System at Security Option of BIOS Features Setup Menu, you will be rompted for the password every time the system is rebooted or any time you try to enter Setup. If you select Setup at Security Option of BIOS Features Setup Menu, you will be prompted only when you try to enter Setup. **Warning:** Retain a record of your password in a safe place. If you forget the password, the only way to access the system is to clear CMOS memory, please refer to page 19 "Clear CMOS".