AK33 Manual en lí nea

NÚM. DE DOC.: AK33-OL-S0103A

Qué es en este manual

AK33	1
Qué es en este manual	2
Deber notar que	9
Antes que comience	10
Trámites para Rápido Instalación	11
Mapa de la Placa Madre	12
Diagrama de bloques	13
Hardware	14
JP14 para limpiar CMOS	15
Enchufe de CPU y Conector de Fan	16
Diseño de CPU sin Jumper	17
Enchufe de DIMM	20
LED de Fuente de RAM	22
PC-Doctor— Dr. LED (Opcional)	23
Conector de Delantero Panel	25

Conector de energía ATX
Conectores IDE y Floppy
IrDA Conector
JP26 / JP27 Termal Sensor (Opcional)
WOL (Wake on LAN)
4X AGP (Accelerated Graphic Port) 34
PC99 Tracero Panel Codificado con color
Soportar 4 USB Puertos
JP12 Enable/Disable Onboard Sonido Chip
Conector CD Audio
AUX_IN Conector
Diseño para largo vida y sin batería
Protección por Corriente Excesivo
Hardware Monitoring
Fusible Reversible
Año 2000 (Y2K)
AOne

1500uF Capacitor de bajo ESR	47
Trazado (Pared del aislamiento de Frecuencia)	49
Driver y Utilidad	50
Menú Autorun en el CD Disco de primo	51
Instalar Windows 95	52
Instalar Windows 98	53
Instalar Windows 98 SE & Windows2000	54
Instalar VIA 4 en 1 Driver	55
Instalar Driver para Onboard Sonido	56
Instalar Utilidad del Controlando Hardware	57
ACPI Suspend to Hard Drive	58
ACPI Suspend to RAM (STR)	65
AWARD BIOS	67
Entrar Configuración de BIOS (BIOS Setup)	68
Configurar Caracteristicas de Estandar CMOS	69
Avanzado Caracteristicas de BIOS	75
	40-0-0

AK33

Avanzado Caracteristicas de Chipset	84
Perifericos Integrados (Integrated Peripherals)	97
Gestión del Suministro (Power Management Setup)	111
Configurar PnP/PCI	122
Estados de salud de PC (PC Health Status)	128
Cargar Configuraciónes predeterminados (Load Setup Defaults)	129
Cargar Turbo Predeterminado (Load Turbo Defaults)	130
Establecer Contraseña de Supervisor	131
Establecer Contraseña de Usuario	131
Guardar y Salir Configuración (Save & Exit Setup)	132
Salir sin Guardarse (Exit without Saving)	133
NCR SCSI BIOS y Driveres	133
Modernizar BIOS (BIOS Upgrade)	134
Sobrereloj (Overclocking)	136
VGA y HDD	138
3losario	139

AK33

AC97	139
ACPI (Configuración avanzado & Interfaz de Fuente)	139
AGP (Acelerado Puerto Gráfico)	140
AMR (Riser Audio/Módem)	140
CD en Pack de Primo de AOpen	140
APM	141
ATA/66	141
ATA/100	141
BIOS (Basica Sistema entrada/salida)	142
Bus Master IDE (Modo DMA)	142
CODEC (Codificar y Descifrar)	142
DIMM (Modulo de Memoria Doble en Línea)	143
ECC (Comprobar Error y Corrección)	143
EDO (Modo Extended de datos salido Data)	143
EEPROM (Electronic Erasable Programmable ROM)	144
EPROM (Erasable Programmable ROM)	144
A	

EV6 Bus	144
FCC DoC (Declaration of Conformity)	145
FC-PGA	145
Flash ROM	145
FSB (anterior Side Bus) Reloj	146
I ² C Bus	146
P1394	146
Parity Bit (Bit de paridad)	146
PBSRAM (Pipelined Burst SRAM)	147
PC100 DIMM	147
PC133 DIMM	147
PDF Format	148
PnP (Plug y Play)	148
POST (Power-On Self Test)	148
RDRAM (Rambus DRAM)	149
RIMM	149

AK33

SDRAM (Synchronous DRAM)	149
SIMM (Modulo de Memoria Único en línea)	150
SMBus (System Management Bus)	150
SPD (Serial Presence Detect)	150
Ultra DMA/33	151
ZIP file	151
Resolver las problemas	152
Soportes tecnicos	156
Número de parte y Número de serie	158
Nombre de Modelo y versión de BIOS	159

Deber notar que

Adobe, el Adobe logotipo, Acrobat son marcas de fábricas del Adobe Sistemas Incorporated.

AMD, el AMD logotipo, Athlon y Duron son marcas de fábricas del Advanced Micro Devices, Inc.

Intel, Intel logotipo, Intel Celeron, PentiumII,Pentium!!! son marcas de fábricas del Intel Corporation.

Microsoft, Windows, y Windows logotipo son o registrado marcas o marcas de fábricas del Microsoft Corporation en Estados Unidos y/o otro países.

Todos productos y nombres de marcas usados en este manual están para identificación sólo y puede ser las registrados marcas de fabricas de sus dueños respectivamente.

Todos specificaciónes y información contenidos en este manual están sujeto a cambiar sin previo anuncio. AOpen reserva los derechos a revisar esta publicación y a hacer razonable cambios. AOpen asume no responsibilidad para cualquier errores o inexactitudes que puede mostrar en este manual, incluyendo los productos y software describidos dentro.

Esta documentación es protegido por la ley de derechos de autor. Todos derechos son reservados.

No parte del documento puede ser usado o reproducido en cualquiera forma o por cualquiera manera, o almacenado en base de datos o sistema a recuperar sin previo permisión escribido por AOpen Corporation.

Derechos de Autor(c) 1996-2000, AOpen Inc. Todos derechos son Reservados.

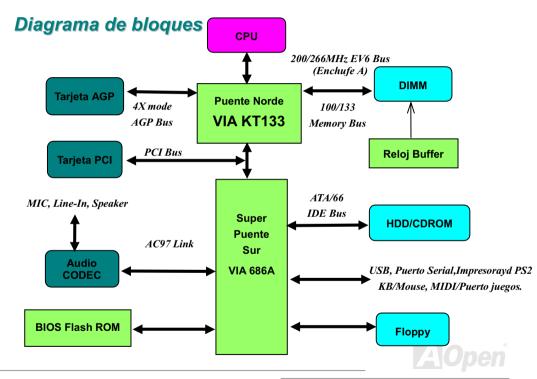
Antes que comience

Este Manual en línea le introducirá cómo este producto es instalado. Todos informaciónes útiles son describidos en los capitulos siguientes. Debe conservvar este manual para futura actualizar o para cambiar configuración del sistema. Este Manual en línea es almacenado en <u>PDF formato</u>. Se recomendamos que usar Adobe Acrobat Reader 4.0 para leer el manual. Que ya es incluido en <u>Primo de CD disco</u> o puede descargo gratis el software desde <u>Adobe sitio web</u>.

Aunque este Manual está óptimo para leer sobre la pantalla. Todavia, está para imprimir. Puede imprimirlo a papel A4 y en la configuración de dos páginas sobre cada hoja en su impresora por elegir **File > Page Setup** y seguir las instrucciónes de la programa de imprimir.

Muchas gracias a su soporte.

Trámites para Rápido Instalación


Trámites siguientes están para instalar su sistema. Debe seguir los pasos con orden para correcta instalación

- 1 Instalar CPU y Fan
- 2 Instalar Sistema Memoria (DIMM)
- 3 Conectar anterior Panel Cable
- 4 Conectar IDE y Floppy Cable
- 5 Conectar Cable para ATX suministro
- 6 Conectar Trasero Panel Cable
- 7 Encender sistema y cargar BIOS Setup Default
- 8 Configurar CPU Frecuencia
- 9 Reiniciar sistema
- 10 Instalar sistema operatiivo (como Windows 98)
- 11 Instalar Driver y Utilidad

AK33

Hardware

Este capítulo describe jumpers, conectors y hardware dispositivos de esta placa madre.

Nota: **D**escargo del estatica electricidad (ESD) puede dañar el procesardor onboard, unidad de disco, tarjeta de expansión, y otros componentes. Siempre observar las instrucciónes siguientes para instalar los componentes.

- 1.No sacar un componente desde su envase protector hasta que se está preparado para instalar.
- 2.Calzar una pulsera de tierra y conectarla al parte metálico de su sistema cuando se instala el componente. Si no una pulsera de tierra está disponible, conectar su sistema con tierra para impedir ESD.

JP14 para limpiar CMOS

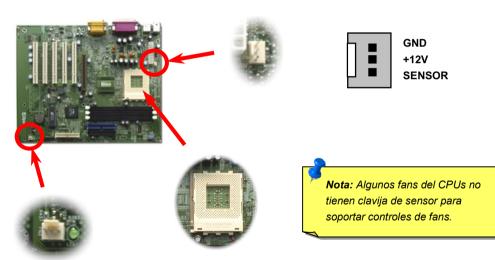
Puede limpiar CMOS para reestablecer las configuraciónes predeterminado. Cumplir los trámites para limpiar CMOS.

- Apagar su sistema, y también cerrar la electrica energia
 AC
- 2. Desmontar electrico cable ATX desde conector PWR2.
- Localizar JP14 y cerrar clavijas 2-3 por unos pocos segundos.
- 4. Restablecer JP14 a su anterior condición de clavijas 1-2.
- 5. Conectar cable ATX atros a conector PWR2.

Normal Operación (predeterminado)

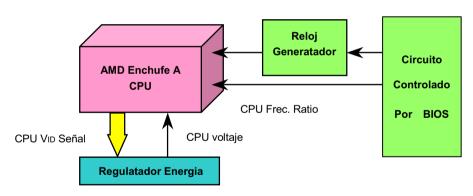
0 2

Limpiar CMOS


Consejo: ¿Cuándo limpio CMOS?

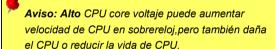
- 1. El arranque fracasa después de sobrereloj de CPU...
- 2. Me olvido la contraseña...
- 3. después de deshacer las problamás...

Enchufe de CPU y Conector de Fan


Enchufar CPU a Enchufe AMD de 462 conector. Prestar atención a orientación de CPU. Enchufar el cable de fan al 3-pin **CPUFAN** conector.

Diseño de CPU sin Jumper

La señal VID del CPU y el generador del reloj <u>SMbus</u> proveen auto-identificación del voltaje CPU para permitar ajuste de frecuencia del CPU mediente el <u>BIOS setup</u>. Todavia, todo ajuste es cumplido sin establecer un el jumper o un el interruptor. Después no hay ningun problema de incorrecta detección de CPU voltaje.



(Automaticalmente generar CPU voltaje)

Auto-identificar lleno serie de CPU Core Voltaje

Este placa madre soportar CPU VID función que pueder identificar lleno serie de CPU core voltaje automaticalmente. El lleno serie es desde 1 1V a 1 85V

Frecuencia de CPU soportado

Core Frecuencia = CPU Bus Reloj * CPU Ratio

EV6 Bus Speed = CPU Bus Reloj x 2

PCI Reloj = CPU Bus Reloj / Reloj Ratio

AGP Reloj = PCI Reloj x 2

CPU	CPU Core Frecuencia	EV6 Bus Reloj	Ratio
Athlon 600	600 MHz	200 MHz	6x
Athlon 650	650 MHz	200 MHz	6.5x
Athlon 700	700 MHz	200 MHz	7x
Athlon 750	750 MHz	200 MHz	7.5x
Athlon 800	800 MHz	200 MHz	8x
Athlon 850	850 MHz	200 MHz	8.5x
Duron 600	600 MHz	200 MHz	6x
Duron 650	650 MHz	200 MHz	6.5x
Duron 700	700 MHz	200 MHz	7x
Duron 750	750 MHz	200 MHz	7.5x

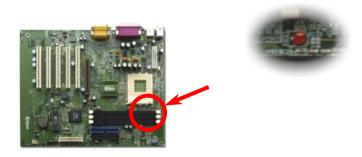
Enchufe de DIMM

Esta placa madre provee tres <u>DIMM Enchufe</u> de 168-pin que permitirte a instalar <u>PC133</u> memoria hasta 1.5GB. Solo se soporta SDRAM.

Consejo: El Chipset de nueva generación falta un buffer de la memoria para establecer superior actuación de capabilidad impulsivo. Asi la cantidad del chip DRAM es muy importante en el eficiencia de la memoria. Cuando no el sistema puede contar la cantidad del chip en cada DIMM, debe contarla uno mismo. El sencillo regla es: Por inspección visual, utilizar DIMMs que tener menos de 16 chipes.

Manual en línea

El DIMM puede ser un modúlo de sola cara o dobles caras; su capacidad es 64 bit datos por 2 o 4 señales del reloj. Se recomenda el SDRAM por 4 señales para su más alto fiabilidad.


Consejo: Para identificar 2-relojes y 4-relojes DIMMs, puede ocupar del dedos de oros a clavija 79 y 163 de SDRAM. Si se verían rastros alli, el SDRAM debe ser 4-reloj; si no, debe ser 2-reloj.

Consejo: Para identificar DIMMs de sola cara o de dobles caras, ocupar los dedos de oros a clavija 114 y 129. Si se ve rastros alli, el DIMM debe ser dobles caras; si no, debe ser sola cara.

LED de Fuente de RAM

Este LED (RAM Power LED) puede indicar la aplicación de fuente a memoria. Durante Modo de Suspend, este LED tambian se trabaja a indicar la aplicación de fuente. No retira modulo de memoria cuando este LED es encendido.

PC-Doctor— Dr. LED (Opcional)

Con PC Doctor (Opcional), el **Dr. LED** puede mostrar fácilmente qué tipo de problema se ocurre en su sistema durante montaje. Puede indicar claramente si hay una cuestión decomponente o una cuestión de instalación por los 8 LEDs en el delantero panel de PC-Doctor. Éste le ayuda a diagnosticar el estados del sistema más rápido.

Manual en línea

Dr. LED es una caja de CD disc con 8 LEDs sobre su anterior panel. El tamaño de Dr. LED es exactamente lo mismo como 5.25 in unidad floppy , para que pueda ser montado en el normal 5.25 in bahía de una caja.

Los 8 LEDes se iluminan en cambio si uno de 8 estados del sistema se fracasa. Cuando el LED7 (último LED) se ilumina, indica que el sistema ha completado los trámites de inciar.

los 8 LEDes indican los messages respectivamente cuando se iluminan:

LED 0 - CPU puede ser instalado incorrectamente o dañado.

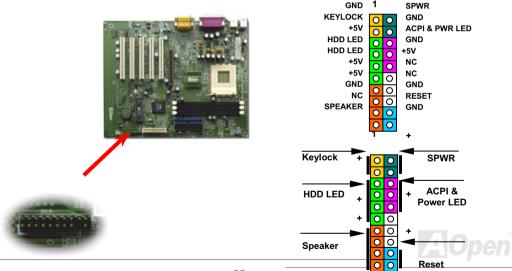
LED 1 - memoria puede ser instalada incorrectamente o dañada.

LED 2 - AGP puede ser instalado incorrectamente o dañado.

LED 3 – tarjeta PCI puede ser instalada incorrectamente o dannada.

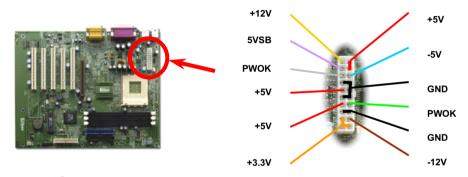
LED 4 – unidad de floppy disco puede ser instalado incorrectamente o dañado.

LED 5 - HDD puede ser instalado incorrectamente o dañado.


LED 6 - teclado puede ser instalado incorrectamente o dañado.

LED 7 - sistema es OK.

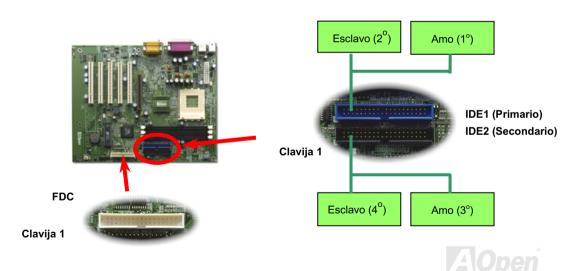
Nota: Durante ejecutar POST (power on self test), el Debug LED se iluminará en serie desde LED0ao LED7 hasta que el iniciar es O.K.


Conector de Delantero Panel

Enchufar los conectores del power LED, altavoz, interruptor de reset a las clavijas correspondiente. Localizar el cable de interruptor de energia desde ATX armazón. Es 2-clavijas femenino conector desde el delantero panel de armazón. Enchufar este conector al conector de soft-power interruptor marcado **SPWR**.

Conector de energía ATX

Un 20-clavijas conector es montado en placa para suministro eléctrico ATX. Asegura que enchufa el cable de energía correctamente.



Aviso: Para ATX sistema, hay siempre un corriente listo en este placa madre. Asegura que separar el cable de ATX fuente desde el ATX conector si agregar o borrar cualquier CPU, DIMM, PCI y tarjeta AGP. De otra manera, puede dañar los componentes gravemente.

Conectores IDE y Floppy

Conectar 34-clavijas floppy cable and 40-clavijas IDE cable to floppy conector FDC y IDE conector. El **azul conector** es IDE1 para clara identificación. Prestar atención a la orientación. Incorrecta orientación puede dañar el sistema en serio.

AK33

También se conocen IDE1 como el primario medio y IDE2 como el secundario medio. Cada canal soporta dos dispositivos IDE ,y asi dos canales soportarán 4 dispositivos. Para trabajarse normalmente, Dos dispositivos en cada canal deben ser establecidos en otro modo de **máster** (amo) o slave (esclavo). Cualquiera puede ser el disco duro o el CD-ROM. Para establecer máster o slave, tiene que establecer los jumpers de los dispositivos. Puede referir los manuales de disco duro y CD-ROM.

Aviso: la especificación del cable IDE es 46cm (18 inches) como maximo. Asegurar que no los cables exceden los largos.

Consejo: Para mejor transferencia, establecer el dispositivo en el lejano cabo como máster. Favor de referir la diagrama anterior para establecer el nuevo o adiciónal dispositivo.

Esta placa madre soporta IDE dispositivos de <u>ATA33</u>, <u>ATA66</u>. Siguiente mesa ilustra el razón de transferencia de IDE PIO y DMA. El IDE bus es 16-bit, significando que cada transferencia es dos bytes.

Modo	Reloj periodo	Reloj Cuenta	Cyclo	Razón de Transferencia
PIO Modo 0	30ns	20	600ns	(1/600ns) x 2byte = 3.3MB/s
PIO Modo 1	30ns	13	383ns	(1/383ns) x 2byte = 5.2MB/s
PIO Modo 2	30ns	8	240ns	(1/240ns) x 2byte = 8.3MB/s
PIO Modo 3	30ns	6	180ns	(1/180ns) x 2byte = 11.1MB/s
PIO Modo 4	30ns	4	120ns	(1/120ns) x 2byte = 16.6MB/s
DMA Modo 0	30ns	16	480ns	(1/480ns) x 2byte = 4.16MB/s
DMA Modo 1	30ns	5	150ns	(1/150ns) x 2byte = 13.3MB/s
DMA Modo 2	30ns	4	120ns	(1/120ns) x 2byte = 16.6MB/s
UDMA 33	30ns	4	120ns	(1/120ns) x 2byte x2 = 33MB/s
UDMA 66	30ns	2	60ns	(1/60ns) x 2byte x2 = 66MB/s
UDMA100	20ns	2	40ns	(1/40ns) x 2byte x2 = 100MB/s

Consejo: Para conseguir superior realización de Ultra DMA 66 disco duro, nececida un especial 80-wires IDE cable para usar modo Ultra DMA 66.

IrDA Conector

El Conector IrDA es configurado en placa para soportar radio módulo infrared y software de aplicación tal como Laplink o Windows 95 Direct Cable Conexión, para que los usuarios pueden transferir datos a/desde los portátiles plegables, Notabookes, PDA y impresores. El conector IrDA soporta HPSIR (115.2Kbps, 2 meters) y ASK-IR (56Kbps).

Instalar el infrared modúlo al **IrDA** conector y capacidar la función infrared desde BIOS Setup, <u>UART Modo Select</u>. Asegura que enchufa el infrared modúlo al conector IrDA en correcto orientación

Clavija 1

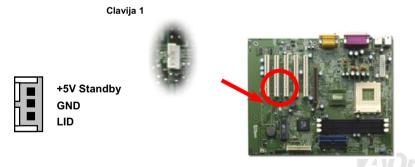
6 5 4 3 2 1

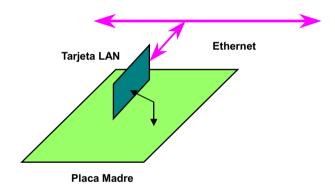
0000

- 1 +5V
- 2 NC3 IRRX
- 4 GND
- 5 IRTX
- 6 +5V

JP26 / JP27 Termal Sensor (Opcional)

Con la realización aumentando, los componentes hoy en dia siempre genera enorme calor dentro del sistema, como CPU, VGA card, HDD, etc., que esán los más importante componentes para un sistema estable. El termal sensor provee un método conveniente y flexible para detectar la temperatura del componente.


Por ejemplo, puede enchufar exactamente el sensor de molde en estrecho abertura entre el CPU y el fregadero de calor (heat sink) a controlar temperatura apropiado.

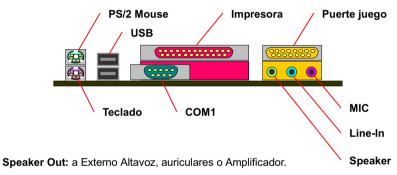

JP 26 CPU Termal Sensor I 2 I GND 2 SENSOR

WOL (Wake on LAN)

La característica de WOL es semejante a <u>Wake On Módem</u>, pero se trabaja a través de red local(LAN). Para usar Wake On LAN función, debe establecer una tarjeta de LAN con el propio chipset para soportar la WOL. Conectar el cable desde tarjeta de LAN a el WOL conector en la placa madre. La información de identificación de sistema (probablemente IP dirección) es almacenado en la tarjeta de red. Ya que hay muchos tráfficos en el Ethernet, debe instalar software de gestión de red, como ADM, para despertar el sistema. Prestar atención que al menos 600mA ATX alerta corriente es necesitado para soportar la tarjeta de LAN por WOL función.

4X AGP (Accelerated Graphic Port)

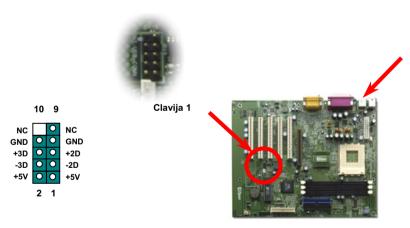
La Placa Madre provee un slot de <u>AGP</u> 4x. El AGP 4x es un bus interfaz para high-performancegraficas 3d de alto realización. Tarjeta AGP recientes son soportadas con más modulos de las memorias. Por lo tanto, la tarjeta AGP necesita más energía para impulsar los chips. El AGP Pro interfaz tiene más clavijas de energía para proveer más energía. AGP soporte operación de leer/escribir a memoria en el modo de uno-a-uno de unica-amo unica-esclavo. AGP utiliza ambos filos levantado y bajado de reloj 66MHz para 2X AGP, con razón de transferencia de datos 66MHz x 4byte x 2 = 528MB/s. AGP está avanzando a modo 4X, 66MHz x 4byte x 4 = 1056MB/s.



PC99 Tracero Panel Codificado con color

Los dispositivos de onboard I/O son PS/2 Teclado, PS/2 Ratón, serie puertos COM1 y COM2, impresora, <u>cuatro USB</u>, AC97 puertos de sonido y juegos. El cuadro mostrado aquí está la vista desde el exterior de carcasa (caja).

.


Line-In: desde fuente de señal, como CD/Tape jugadora

MIC-In: desde Microfono

Soportar 4 USB Puertos

Esta placa madre soporta totalmente cuatro puertos USB. Dos de ellos son establecido en Trasero Panel, y los otro dos en el izquierdo-bajo parte de esta placa madre. Puede conectar estos conectores a anterior panel.

JP12 Enable/Disable Onboard Sonido Chip

Esta placa madre provee sonido <u>AC97</u> onboard que capacitar o dejar (incapacitar) el onboard chip AD1885 <u>CODEC</u>. Si se deja el Onboard Audio, debe poner 2-3 de JP12 cerrado, y también dejar el "OnChip Sonido" en BIOS setting > Advanced Chipset Features, antes que elija su tarjeta PCI de sonido para instalar.

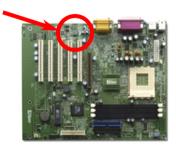
3 2 1

Enable

3 2 1

000

Disable



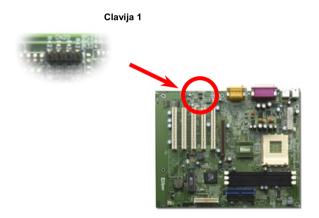
Conector CD Audio

Este conector conecta CD Audio cable desde CDROM o DVD unidad al sonido en placa.

Clavija 1

CD-IN

4 3 2

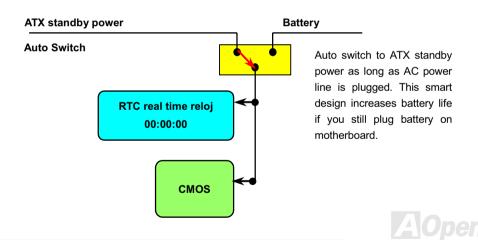


1 L 2 GND 3 GND 4 R

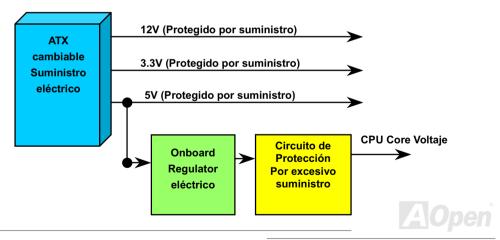
AUX_IN Conector

Este conector conecta MPEG Audio cable desde MPEG tarjeta al sonido en placa.

AUX_IN


D

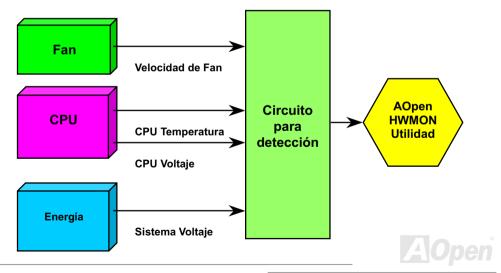
D


Diseño para largo vida y sin batería

Esta placa madre provee un especial circuito para guardar su corriente configuraciónes del CPU y CMOS Setup sin la ayuda de la batería. El RTC (real tiempo reloj) también quede obrar siempre que se enchufe el cable eléctrico. Si se pierden los datos en CMOS por casualidad, puede cargar los configuraciónes CMOS desde EEPROM. El sistema recuperará en el estado previo.

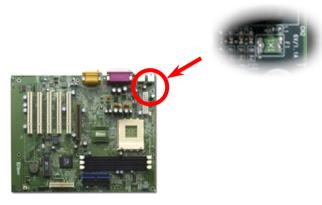
Protección por Corriente Excesivo

La protección por corrienteexcesivo es muy popular en la placa con cambiable suministro eléctrico ATX 3.3V/5V/12V. Todavia, los CPUs de nueva generación necesitará una diferente voltaje (como 2.0V) transferido desde 5V a la voltaje del CPU, asi haciendo la proteción por corriente excesivo inútil. Esta placa madre provee uno cambiable regulador onboard para soportar la protección del CPU por excesivo suministro electrico. Asi además de 3.3V/5V/12V suministro, se provee el completo alcance de protección por corriente excesivo.



Nota: Aunque la placa de Aopen provee esta protección circuito para impedir los teórico errores, se existen posibilidades que CPU, memory, HDD, add-on tarjetas instalado en esta placa madre serán dañado por fracaso de componente, humano error en operación o otro razón desconocido. **AOpen no puede guarantizar que el circuito de protección funcionará correctamente para siempre.**

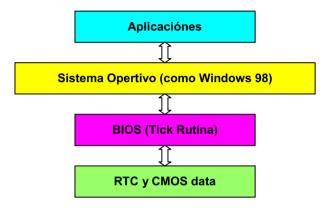
Hardware Monitoring


Esta placa madre provee un mecanismo controlando el hardware. Cuando encender el sistema, este elegante diseño comenzarase en controlar la voltaje, y el estado de fan y la temperatura del CPU. Si alguno de los estados está anormal, hay una alarma a través de <u>Hardware Monitoring Utilidad</u> de Aopen para avisar los usuarios.

Fusible Reversible

La tradiciónal placa madre provee los fusibles para proteger teclado y <u>USB</u> puerto del excesivo electricidad o cortocircuito. Estos fusibles son soldado onboard. Cuando se rompe el fusible (protegiendo la placa madre), no se puede revertir y no se rehabilita la placa madre.

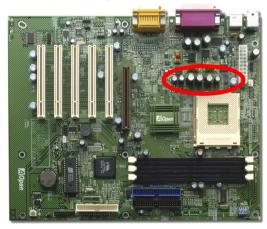
Por los caro fusibles reversible, esta placa madre puede rehabilitarse después que el fusible ha hecho su trabajo de guardia.


Año 2000 (Y2K)

Y2K es esencialmente una problema en identificación de código de año. Para ahorrar el espacio de almacenar, tradicional software usa solo dos digitos para identificación del año. Por ejemplo, 98 es para 1998, y 99 es para 1999.

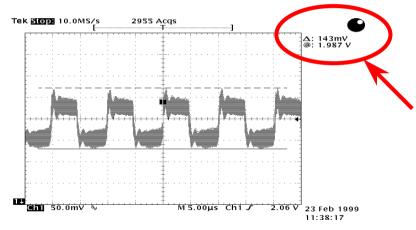
Hay un circuito RTC (Real Time Clock) que conectar CMOS RAM de datos 128 bytes en el chipset de la plca madre. El RTC tiene dos digitos y el CMOS tiene otros dos digitos. la proplema es que este circuito actúa como 1997→ 1998 → 1999 → 1900. Es decir, es la problema de Y2K. La diagrama más debajo presenta cómo las programas trabajan con los OS, BIOS y RTC. Para mantener mejor compatibilidad dentro de industria de PC, hay un regla que las programas de applicactiónes debe acceder el OS para conseguir alguno servicio, y el OS debe acceder el BIOS, y entonces solo BIOS es permitido a acceder el hardware (RTC) directamente.

Manual en línea

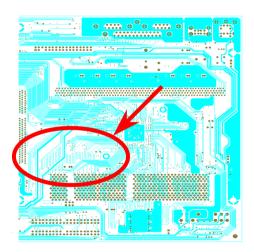


Hay una Tick Rutína (que sigue cada 50m sec) en BIOS para manyener registro de la información de las fecha/hora. Generalmente, esta Tick Rutína no pone al día del CMOS todos las veces porque el CMOS es un dispositivo muy lento, que disminuye la realización del sistema. Esta Tick Rutína de AOpen BIOS provee 4 digitos para codificar los años, todo el tiempo que las Aplicaciónes y el sistema operativo sigue la regla para conseguir la información de los fecha/hora. Hay no problema de Y2K (tal como programa de prueba de NSTL) en la Placa de AOpen. Todavia ,es incorrecto que alguna programa de prueba (tal como Checkit 98) accede RTC/CMOS directamente. Esta placa madre mantiene La comprobación de Y2K del hardware y La protección para operación sin peligro.

1500uF Capacitor de bajo ESR


La calidad de capacitor de bajo ESR (Bajo Resistencia de Equivalent Series) en operación de alto frecuencia es muy importante para el estable suministro eléctrico del CPU. La localización de los capacitores es todavia conocimientos que consta de experiencia y calculo preciso.

Notar que, solo este placa madre ejecuta **1500uF capacitores**, que es más alto de normal 1000 uF y provee más alto estabilidad para la energía del CPU.



El circuito para la voltaje del CPU core debe ser comprobado para la estable sistema del CPUs de alto velocidad (como el nuevo Pentium III, o CPU para sobrereloj). Una típica voltaje del CPU core es 2.0V. Asi uno bueno diseño debe controlar la voltaje entre 1.860V y 2.140V. Es decir, el transitorio debe ser bajo 280mV. Véase la diagrama de cronometraje capturado por alcance de Digital Almacenaje. Se demostra que la voltaje transitorio está solo 143mv aunque la maximo corriente eléctrico 18A sea aplicado.

Nota: La diagrama es solo un ejemplo, no puede ser el mismo como esta placa madre.

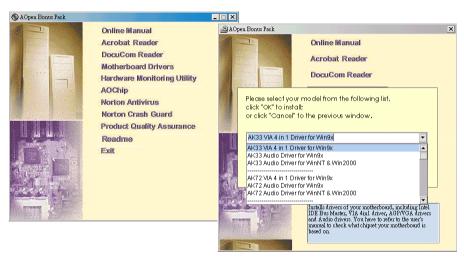
Trazado (Pared del aislamiento de Frecuencia)

Nota: Esta diagrama solo está un ejemplo, no puede ser el mismo como esta placa

En operación de la alta frecuencia, especialmente sobrereloj, el trasado es el muy importante factor para la estable condición de trabajo por chipset y CPU. El trazado de esta placa madre provee un único diseño llamado " Pared de aislamiento de Frecuencia" que separar cada crítico área de placa en regiónes donde cada una de ellas trabaja en una mismo semejante alcance frecuencia para evitar "charla sobre" y interferencia de frecuencia entre cada región. Se debe calcular precisamente el largo de rastro y la ruta. Por ejemplo, rastros de reloj debe ser igualado en largo (no necesita que ser lo más corto posible) para que se controlará el prejuicio de reloj dentro de unos pocos pico segundos (1/10¹² Sec).

Driver y Utilidad

Driveres y utilidades son incluido en <u>AOpen Primo CD disco</u> para esta placa madre. No necesita instalar todo de ellos para empezar su sistema. Todavia, después de instalación de hardware, debe instalar su sistema operativo primeramente (como Windows 98) antes que instala otro driveres o utilidades. Referir el quía de su sistema operativo para instalación.



Nota: Sequir los trámites recomendado abajo para instalar <u>Windows 95</u> y <u>Windows 98</u>.

Menú Autorun en el CD Disco de primo

Utilizar el menú Auto-run de Primo CD disco. Elegir los utilidades y driveres y los nombres de modelos.

Instalar Windows 95

- 1. Primero, instalar el tarjeta AGP antes de algunos otros para añadir.
- Instalar Windows 95 OSR2 v2.1, versión1212 o 1214 y más reciente con spporte de USB. Si no, debe instalar USBSUPP.EXE.
- 3. Instalar el <u>VIA 4 in 1 driver</u>, que incluye VIA AGP Vxd driver, IRQ driver de carretera, y la programa de registro de función de VIA chipset.
- 4. Por fin, Instalar otro tarjeta para añadir y los driveres.

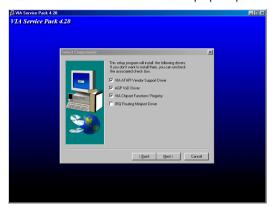
Instalar Windows 98

- 1. Primero, instalar tarjeta AGP antes de algunas otras para añadir.
- 2. Capacitar el controlador USB en BIOS Setup > Integrated Peripherals > <u>USB OnChip</u>, activando BIOS para completo control de tarea de IRQ.
- 3. Instalar Window 98 en su sistema.
- Instalar el VIA 4 in 1 driver que incluye VIA AGP Vxd driver, IRQ driver de carretera, y la programa de registro de función de VIA chipset.
- 5. Por fin, instalar otras tarjetas para añadir y las driveres.

Instalar Windows 98 SE & Windows 2000

Si se usa Windows[®] 98 Edición segundo, o Windows[®] 2000, no se instala el 4-en-1 driver porque el IRQ Driver de corretera y el ACPI Registro son ya incorporatado en el sistema operativo. Usuarios de Windows[®] 98 SE puede poner al día el VIA Registro INF y driveres AGP por instalar los driveres respectivamente.

Please referir a VIA Technologies Inc. para último versión de 4 en 1 driver:


http://www.via.com/

http://www.via.com/driveres/4in1420.exe

Instalar VIA 4 en 1 Driver

Puede instalar el VIA 4 in 1 driver (<u>IDE Bus master</u>, VIA <u>AGP</u>, IRQ Routing Driver, VIA Registry) desde el Autorun menú del CD dico en paquete primo.

Nota: Instalación de BusMáster IDE puede causar falta de Suspend to Hard Drive.

Aviso: Si se quita el driver VIA AGP Vxd, debe quitar el driver de tarjeta AGP primero. Si no, la pantalla se puede hacer negro en rearrancarse después de quitar.

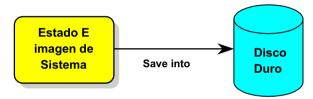
pen

Instalar Driver para Onboard Sonido

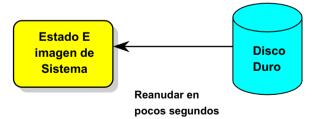
Esta placa madre provee AD 1885 AC97 CODEC. El controlador de sonido es establecido en Sur Puente de VIA chipset. Puede encontrar el Driver de audio desde el menú auto-run de CD Disco de Paquete de primo.

Instalar Utilidad del Controlando Hardware

Puede instalar la utilidad de controlando hardware para controlar temperatura CPU, fans y la voltaje de el sistema. Esta función de control es automaticamente establecido por el BIOS y utilidad software, no se necesita instalación de el hardware.



ACPI Suspend to Hard Drive


ACPI Suspend to Hard Drive (Suspender a Disco Duro) es fundamentalmente controlado por Sistema Windows. Se Guarda su current work (sistema status, memory y screen image) en disco duro, y entonces el sistema puede ser apagado totalmente. Pues, cuando se encende el suministro, puede reanudar el trabajo original directamente desde el disco duro al instante en saltar los tramites de rearrancar Windows. Si su memoria instalado es 64MB, se reserve al menos 64MB en el HDD para guardar su imagenes en las memorias.

Durante Modo Suspender:

Cuando Reanudando Suministro:

Requisito del Sistema

- AOZVHDD.EXE 1.30b o más reciente.
- 2. Borrar config.sys y autoexec.bat.

Fresco instalación de Windows 98 en un nuevo sistema

- 1. Ejecutar "Setup.exe /p j" para instalar Windows 98
- 2. Después que Windows 98's instalación es completo, entrar Control Panel > Power Management.
 - a. Establecer Power Schemes > Sistema Standby to "Never".
 - b. Haga clic a "Hibernate" y elegir "Enable Hibernate Support" entonces "Apply".
 - c. Haga clic al "Advanced" tab, se verá "Hibernate" en "Power Buttons". Recuerde que esta opción solo puede ser sido después paso b menciónado sobre ha estado completado, Si no, solo verase "Standby" y "Shutdown" . Elegir "Hibernate" y "Apply".
- 3. Rearrancar en el DOS y ejecutar AOZVHDD utilidad.
 - a. Si se establece el todo disco para sistema Win 98 (FAT16 o FAT 32), Ejecutar "aozvhdd /c /file". Recuerde que se reserve bastante espacio libre en el disco, p.eg. si se establece 64 MB DRAM y 16 MB VGA tarjeta, se necesita al menos 80 MB espacio libre para sistema. La utilidad localizá el espacio automaticamente.

Manual en línea

- b. Si se asigna la especifico divición para Win 98, ejecutar "aozvhdd /c /partition". Desde luego, el sistema necesita una divición libre antes de formatear.
- 4. Rearrancar sistema.
- 5. Ahora se ha establecido ACPI Suspend to-Hard Drive. Presiónar "Start > Shut Down > Standby". Entonces se hace la pantalla apagado en un instante. Dentro de un minuto o menos el sistema guardá todos datos de las memorias em el disco duro. Cuanto más grande es el memoria, más durará el guarda.

Cambiar modo desde APM a ACPI (Windows 98 sólo)

- 1. Ejecutar "Regedit.exe"
 - a. Tomar la ruta siguiente

HLA TECLA_LOCAL_MACHINE

SOFTWARE

MICROSOFT

WINDOWS

CURRENT VERSION

DETECT

- b. elegir "ADD Binary" y nombrarlo como "ACPIOPCIÓN".
- c. Haga clic y elegir Modify, Agregar "01" después "0000" para exponer "0000 01".
- d. Guardar el cambio.
- elegir "Add New Hardware" debajo de Control Panel. Permite Windows 98 buscar nuevo hardware. (Encontrará "ACPI BIOS" y guitará "Plug y Play BIOS")
- 3. Rearrancar el sistema.
- 4. Entrar DOS y ejecutar "AOZVHDD.EXE /C /File"

Cambiar modo desde ACPI to APM

- 1. Ejecutar "Regedit.exe"
 - a. Tomar la ruta siguiente

HLA TECLA LOCAL MACHINE

SOFTWARE

MICROSOFT

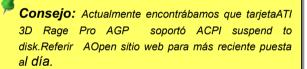
WINDOWS

CURRENT VERSION

DETECT

ACPI OPCIÓN

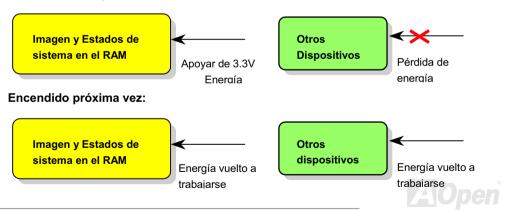
b. Haga clic y elegir "Modify, cambiar "01" a "02" para exponer "0000 02".


Consejo: "02" significa que Windows 98 es reconocido por ACPI pero el ACPI función es dejado.

c. Guardar cambios.

Manual en línea

- 2.Elegir "Add New Hardware" debajo de Control Panel. Permite Windows 98 buscar nuevo hardware. (encontrará "Plug y Play BIOS" y guitará "ACPI BIOS")
- 3.Rearrancar el sistema.
- 4. Ejecutar "Add New Hardware" otra vez y encontrará "Advanced Power Management Resource".
- 5.Haga clic "OK".



ACPI Suspend to RAM (STR)

Esta placa madre soporta <u>ACPI</u> Suspend al RAM. Con esta función, puede reanudar su trabajo original directamente desde DRAM sin hacer trámites de reinciar Windows 98 o ejecutar su aplicación otra vez. Suspender to DRAM guarda su trabajo actual en el memoria de sistema. Es más rápido que Suspend to Hard Drive pero necesita suministro eléctrica a DRAM mientras Suspend to Hard Drive no necesita suministro.

En modo de Suspend:

Para ACPI Suspend a DRAM, ejecutar el trámites siguientes:

Requisito de Sistema

- Se necesita un sistema operativo de ACPI. Actualmente, Windows 98 es elsolo selección. rreferir a ACPI Suspend to Disco Duro para establecer Windows 98 ACPI modo.
- 2. El VIA 4 in 1 Driver debe ser instalado correctamente.

Trámites

1. Cambiar el configuraciónes BIOS siguientes.

BIOS Setup > Power Management Setup > ACPI Function: Capacitado

BIOS Setup > Power Management Setup > ACPI Suspend Type: S3.

- 2. Ir a Control Panel > Power Management. Ajustar "Power Botónes" a "Standby".
- 3. Presionar botón de energía o botón Standby a despertar sistema.

AWARD BIOS

Los Parámetros del Sistema puede ser modificado por entrar el menú de <u>BIOS</u> Setup. Este menú permitelo configurar los parámetros del sistema y guardar la configuración en el 128 byte CMOS, (normalmente en el RTC chip o en el chipset principal). <u>Para entrar menú de BIOS setup</u> apetar cuando pantalla <u>POST (Power-On Self Test)</u> es mostrado en su monitor.

Nota: Porque el código de BIOS es el parte de diseño de placa que más a menudo cambiar, el información de BIOS contenido enesta manual puede ser diferente a mismisimo BIOS a su placa

Entrar Configuración de BIOS (BIOS Setup)

Después que se han terminado los configuración de los jumpers y se han conectados los cables correctamente, iniciar sistema y entrar el BIOS Setup, presionar durante POST (Power-On Self Test). Elegir "Load Setup Defaults" para optimo realización recomendado.

Configurar Caracteristicas de Estandar CMOS

El "Standard CMOS Features Setup" (Configuración de estandar CMOS) configura los básico parámetros de sistema como fecha, hora, y el tipo de Disco Duro. Usar las teclas de flecha para subrayar artículo y <PgUp> o <PgDn> para elegir el valer de cada artículo.

```
CMOS Setup Utility - Copyright (C) 1984-2000 Award Software
Standard CMOS Features
   Date (mm:dd:yy)
                                                                 Item Help
                                Wed. May 31 2000
   Time (hh:mm:ss)
                                13 : 22 : 35
                                                          Menu Level ▶
 ▶ IDE Primary Master
▶ IDE Primary Slave
                                                          Change the day, month,
 ▶ IDE Secondary Master
                                                          year and century
 ▶ IDE Secondary Slave
   Drive A
                                1.44M. 3.5 in.
                                EGA/VGA
   Video
   Halt On
                                All, But Keyboard
   Base Memory
   Extended Memory
   Total Memory
| | ++: Move | Enter: Select +/-/PU/PD: Value | F10: Save | ESC: Exit | F1: General | Help
    F5:Previous Values
                            F6:Fail-Safe Defaults
                                                      F7:Optimized Defaults
```


Estandar CMOS > la fecha (mm:dd:yy)

Para establecer el parámetro de la fecha, subrayar el parámetro de fecha. Presionar <PgUp> o <PgDn> para establecer la fecha actual. El formato de fexha es el mes, la fecha, y el año.

Estandar CMOS > la hora (hh:mm:ss)

Para establecer la hora, subrayar el parámetro de la hora. Presionar <PgUp> o <PgDn> para establecer la hora actual en el formato: hora, minuto, y segunda. La hora es basado en reloj militar de 24 horas.

Standard CMOS Features > IDE Primary Master > Type
Standard CMOS Features > IDE Primary Slave > Type
Standard CMOS Features > IDE Secondary Master > Type
Standard CMOS Features > IDE Secondary Slave > Type

<u>T</u>	'n	p	e

Auto

User

None

Elegir los parámetros del disco duro IDE que su sistema oporta. Estos parámetros son "Size", "Number of Cylinder", "Number of Head", "Start Cylinder" para Pre-compensation, "Cylinder number" de Head Landing Zone y "Number of Sector per Track". La elección predeterminado está Auto, que capacitar BIOS a auto- detectar los parámetros de HDD (Hard Disk Drive) en POST (Power-On Self Test). Si prefiere a entrar HDD parámetros manualmente, elegir User. Elegir None si no HDD es conectado al sistema.

El CDROM IDE es siempre auto-detectado.

Standard CMOS Features > IDE Primary Master > Mode
Standard CMOS Features > IDE Primary Slave > Mode
Standard CMOS Features > IDE Secondary Master > Mode
Standard CMOS Features > IDE Secondary Slave > Mode

|--|

Auto Normal

LBA

Large

La características aumentado de IDE permiten el sistema usar un Disco Duro a la capacidad más 528MB. Este función es hecho a través del modo de traducción de Logical Block Address (LBA). Consideran el LBA como la estandar característica de IDE Disco Duro actualmente en venta a causa de las capabilidad para soportar una capacidad más grande que 528MB. Notar que si un HDD es formateado con LBA capacitado, no puede arrancar con LBA dejado.

Standard CMOS Features > Drive A

Drive A

None

360KB 5.25"

1.2MB 5.25"

720KB 3.5"

1.44MB 3.5"

2.88MB 3.5"

Estos artículos están para el tipo de unidad de floppy . Las opciónes soportado por la placa madre son puesto a la izquierda.

Standard CMOS Features > Video

Video

EGA/VGA

CGA40

CGA80

Mono

Este artículo especifica el tipo de la tarjeta de video en uso. El valor predeterminado es VGA/EGA. Porque se usa solo VGA en los PCs en venta, esta función es asi inútil y podrá ser dejado .

Standard CMOS Features > Halt On

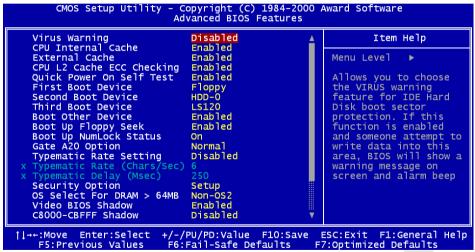
Halt On

No Errors

All Errors

All, But Keyboard

All, But Diskette


All, But Disk/Key

Este parámetro (Halt On) capacita el control en las paradas de sistema en caso de Power-On Self Test (POST) error.

Avanzado Caracteristicas de BIOS

El siguiente pantalla mostra cuando elige la opción "Advanced BIOS Features" desde el menú principal.

La página es la más baja mitad de submenú de Advanced BIOS Features.

```
CMOS Setup Utility - Copyright (C) 1984-2000 Award Software
Advanced BIOS Features
                                                                 Item Help
   First Boot Device
                                Floppy
   Second Boot Device
                                HDD-0
                                                         Menu Level
   Third Boot Device
                               LS120
   Boot Other Device
                               Enabled.
   Boot Up Floppy Seek
                               Enabled.
   Boot Up NumLock Status
                               On
   Gate A20 Option
                               Normal
   Typematic Rate Setting
                               Disabled
 x Typematic Rate (Chars/Sec) 6
x Typematic Delay (Msec)
  Security Option
OS Select For DRAM > 64MB
                               Setup
                               Non-OS2
  Video BIOS Shadow
                               Enabled.
  C8000-CBFFF Shadow
                               Disabled
  CC000-CFFFF Shadow
                               Disabled
                               Disabled
   D0000-D3FFF Shadow
  D4000-D7FFF Shadow
                               Disabled
   D8000-DBFFF Shadow
                               Disabled
   DC000-DFFFF Shadow
                               Disabled
11→+:Move Enter:Select
                          +/-/PU/PD:Value F10:Save
                                                       ESC:Exit F1:General Help
    F5:Previous Values
                           F6:Fail-Safe Defaults
                                                      F7:Optimized Defaults
```


Advanced BIOS Features > Virus Aviso

Virus Aviso

Enabled

Disabled

Para establecer este artículo (Aviso por Virus), elegir "Enabled" a capacitar el aviso, o "Disabled" para dejar mensaje. Este artículo protege el sector de arrancar y mesa de devición en el Disco Duro en contra de virus. Alguno intento en arrancar para escribir en sector de arrancar parará el sistema y el aviso se presentara en la pantalla. Ejecutar una anti-virus programa para localizar la problema.

! AVISO!

Disk Boot Sector is to be modified

Type "Y" to accept write, or "N" to abort write

Award Software, Inc.

Advanced BIOS Features > CPU Internal Cache (Cache interno)

CPU Internal Cache

Enabled

Disabled

"Enabled" para capacitar el CPU L1 cache. "Disabled" parar dejarlo y retardar el sistema. Se recomenda que quedalo "enabled" a menos que está deshaciendo la problema.

Advanced BIOS Features > External Cache (Cache externo)

External Cache

Enabled

Disabled

"Enabled" para capacitar el CPU L2 cache. "Disabled" parar dejarlo y retardar el sistema. Se recomenda que quedalo "enabled" a menos que está deshaciendo la problema.

Advanced BIOS Features > CPU L2 Cache ECC Checking

CPU L2 Cache ECC

Checking

Enabled

Disabled

Este artículo capacita o deja inspección de L2 Cache ECC.

Advanced BIOS Features > Quick Power On Self Test

Quick Power on Self

Test

Enable

Disabled

"Enabled" para acelerar <u>POST</u> por omitir su algunos artículos ejecutado en normal caso.

AK33

Advanced BIOS Features > First Boot Device Advanced BIOS Features > Second Boot Device Advanced BIOS Features > Third Boot Device

First Boot Device

A:

LS/ZIP

C:

SCSI

CDROM

D: E:

F:

IAN

Disabled

Este artículo te permite especificar la secuencia de busca de dispositivo para iniciar el sistema. Los IDs son mostrado aquí:

C: Primary master

D: Primary slave

E: Secondary master

F: Secondary slave

LS: LS120

Zip: IOMEGA ZIP Drive

Advanced BIOS Features > Boot Other Device

Boot Other Device

Enabled

Disabled

Este artículo capacitar / incapacitar otro dispositivos de sistema a iniciar el sistema.

Advanced BIOS Features > Boot Up Floppy Seek

Boot Up Floppy Seek

Enable

Disabled

Capacitar (enable) o dejar (disable) buscar los estados y detectar algún error en embos floppy discos durante POST.

Advanced BIOS Features > Boot Up NumLock Status

Boot Up NumLock Status

On

Off

"On" para capacitar el numérico función de la numérico téclapad. "Off" para dejar la función y todavia canjear la téclapad para cursor control.

Advanced BIOS Features > Gate A20 Option

Gate A20 Option

Elegir cómo chipset controlador de teclado controla gate A20.

Normal Fast

Enable

Normal : una clavija en controlador teclado controla

GateA20.

Fast : chipset le controla GateA20.

Advanced BIOS Features > Typematic Rate Setting

Typematic	Rate
<u>Setting</u>	
Disable	

Capacitar o dejar esta función de rápido razón repetitivo del teclado

Advanced BIOS Features > Typematic Rate (Chars/Sec)

Typematic Rate

6, 8, 10, 12, 15, 20, 24, 30 Este cartículo especifica el razón cuándo carácter por cada carrera de la tecla.

El valor predeterminado es 30 characters/sec.

Advanced BIOS Features > Typematic Delay (Msec)

Typematic Delay

250, 500, 750, 1000

Este cartículo especifica el razón de tardar de la cada carrera para antes de comienzo de otro carrera (donde otro carrera comienza). Las razónes de tardar son 250, 500, 750, y 1000 msec.

Advanced BIOS Features > Security Option

Security Option

Setup

Sistema

Elegir "Sistema" para limitar acceso a ambos arrancar sistema y BIOS setup. Asi , necesitase entrar su contraseña en prompt en la pantalla para arrancar su sistema cada vez.

Elegir "Setup" para limitar acceso solo a BIOS setup.

Para dejar "Security option", elegir Password Setting from el menú principal, sólo presionar <Enter> pero no entrar nada.

Advanced BIOS Features > OS Select for DRAM > 64MB

OS Select for DRAM > 64MB

OS/2

Non-OS/2

Establecer a OS/2 si su sistema usa un sistema OS/2 y tiene una memoria de tamaño más que 64 MB.

Advanced BIOS Features > Video BIOS Shadow

Video BIOS Shadow

Enabled

Disabled

"VGA BIOS Shadowing" significa la función de copiar BIOS de tarjeta de video display en el área de DRAM. Éste aumentará realización del sistema porque tiempo de DRAM aceso es más rápido que ROM.

Advanced BIOS Features > C800-CBFF Shadow

Advanced BIOS Features > CC00-CFFF Shadow

Advanced BIOS Features > D000-D3FF Shadow

Advanced BIOS Features > D400-D7FF Shadow

Advanced BIOS Features > D800-DBFF Shadow

Advanced BIOS Features > DC00-DFFF Shadow

C8000-CBFFF

Shadow

Enabled

Disabled

Estos seis artículoa capacitan (enabled) o dejan (disabled) copias de los códigos de ROM a otra tarjetas de expansión. Antes que establecan estos parámetros, se necesita a saber específicas direcciónes de los códigos de ROM. Si no se sabe las informaiónes, capacitar todos estos seis artículos.

Nota: Los F000 y E000 segmentos son siempre reflejados porque codigo de BIOS ocupa estas áreas.

Avanzado Caracteristicas de Chipset

El "Advanced Chipset Features" incluye configuracíones para caracteristicas de chipset. Estas caracteristicas están pertinente a realización de sistema.

Esta página es la más baja mitad de submenú de Advanced Chipset Features.

```
CMOS Setup Utility - Copyright (C) 1984-2000 Award Software
                         Advanced Chipset Features
                                                              Item Help
  System BIOS Cacheable
                              Disabled
  Video RAM Cacheable
                              Disabled
  AGP Aperture Size
                              64M
                                                       Menu Level
  AGP-4X Mode
                              Enabled.
  AGP Driving Control
                                                       Enabled adds a parity
                              Auto
x AGP Driving Value
                                                       check to the boot-up
  K7 Clock Control Select
                              Optimal
                                                       memory tests. Select
                                                       Enabled only if the
  OnChip USB
                              Fnabled
  USB Keyboard Support
                              Disabled
                                                       system DRAM contains
  USB Mouse Support
                              Disabled
                                                       parity
  OnChip Sound
                              Enable.
  CPU to PCI Write Buffer
                              Enabled.
  PCI Dynamic Bursting
                              Enabled.
  PCI Master 0 WS Write
                              Enabled.
  PCI Delay Transaction
                              Enabled.
  PCI#2 Access #1 Retry
                              Enabled.
  AGP Master 1 WS Write
                              Disabled
                              Disabled
  AGP Master 1 WS Read
  Memory Parity/ECC Check
                              Disabled | |
↑l→←:Move Enter:Select +/-/PU/PD:Value F10:Save
                                                     ESC:Exit F1:General Help
   F5:Previous Values
                          F6:Setup Defaults
                                                F7:Turbo Defaults
```


Advanced Chipset Features > Bank 0/1 DRAM Timing Advanced Chipset Features > Bank 2/3 DRAM Timing Advanced Chipset Features > Bank 4/5 DRAM Timing

Bank	0/1	DRAM
<u>Timing</u>		
SDRAM	1 8/10 n	s
Normal		
Medium	ı	
Fast		
Turbo		

Establecer estos parámetros a control cronometraje de DRAM timing.

El valor predeterminado es "Normal". No cambiar el valor predeterminado sin soporte tecnico de ingeniería.

Advanced Chipset Features > SDRAM Cycle Length (largo de ciclo)

SDRAM Cycle Length		
2		
3		

Esta SDRAM cronometraje es calculado por relojs. Ajustar el valor a cambiar la SDRAM realización. Valor predeterminado es 2 relojs. Si su sistema es inestable, cambiar 2T to 3T.

Advanced Chipset Features > DRAM Reloj

DRAM Reloi

Host CLK.

HCLK +33M

Auto

Para entender fácilmente en estado sin sobrereloj, Host CLK significa CPU CLK y HCLK +33M significa CPU +PCI CLK. Valor predeterminado es **Auto**.

Advanced Chipset Features > Memory Hole

Memory Hole

15 M - 16 M

Disabled

"Enabled" para capacita el reserva de15M-16M de memoria de sistema especial tarjeta ISA. El chipset accede código/dato de las áreas desde ISA bus directamente. Normalmente, estas áreas están reservado a tarjeta I/O planeado para memoria.

Advanced Chipset Features > PCI Master Pipeline Req

PCI Master Pipeline
Req

Enabled

Disabled

Capacitar (enable) este artículo a aumentar realización de PCI bus. Predeterminado valor es **Disabled (incapacitado)**.

Advanced Chipset Features > P2C/C2P Concurrency (al mismo tiempo)

P2C/C2P Concurrency

Enabled

Disabled

Este artículo puede capacitar(enable) o dejar(disable) el PCI a CPU/CPU a PCI al mismo tiempo.

Advanced Chipset Features > Fast R-W Turn Around

Fast	R-W	Turn
<u>Around</u>		
Enabled		
Disabled		

Este artículo es usado a reducir el tiempo de CPU Leer(read) a Escribir(write) volver , y así mejora realización de DRAM .

Advanced Chipset Features > Sistema BIOS Cacheable

Sistema	BIOS
<u>Cacheable</u>	
Enabled	
Disabled	

"Enabled" para capacitar leer los datos en F0000h a FFFFFh de memoria de sistema a memoria cache y vice versa. El leer desde el BIOS ROM a RAM de sistema mejorará la realización de sistema.

Advanced Chipset Features > Video RAM Cacheable

Video RAM Cacheable
Enabled

Disabled

Para cache Video RAM A000 y B000, y mejora VGA BIOS realización indirectamente.

Advanced Chipset Features > AGP Aperture Size

AGP Aperture Size

4M, 8M, 16M, 32M, 64M, 128M

Este artículo especifica el tamaño de la rendija (aperture) en la sistema memoria. Esta rendija es dedicado a <u>Acelerado</u> <u>Graphic Puerto (AGP)</u>.

Advanced Chipset Features > AGP-4X Mode

AGP-4X Mode

Enabled

Disabled

Para capacitar (enable) modo AGP 4X.

4X modo provee más alto grafico realización, pero puede causar problema de compatibilidad.

Advanced Chipset Features > AGP Driving Control

AGP Driving Control

Auto

Manual

Este artículo le permite establecer AGP driving control a "Auto" o "Manual".

Advanced Chipset Features > AGP Driving Value

AGP Driving Value

Entrar un HEX número. Min=000 Max=00FF

DA

Bit 7-4: AGP salida buffer drive fuerza N control.

Bit 3-0: AGP output buffer drive fuerza P control.

Advanced Chipset Features > K7 Reloj Control Select

K7	Reloj	Control
Sele	<u>ct</u>	
Defa	ult	

Es para cambiar modo de K7 CPU reloj control. Este artículo sólo soporta AMD Athlon K7 CPU. Cambiar la opción para establecer cronometraje CPU a turbo modo.

Advanced Chipset Features > OnChip USB

OnChip USB

Enabled

Optimal

Disabled

Para capacitar (enable) o incapacitar (disable) <u>USB</u> controlador.

Advanced Chipset Features > USB Keyboard Soportar

USB	Keyboard
<u>Soportar</u>	
Enabled	
Disabled	

Para capacitar o incapacitar driver de <u>USB</u> teclado dentro de BIOS. Este driver simula ordenes de legacy keyboard y permitelo a usar USB teclado durante_<u>POST</u> o después iniciar sistema.

Nota: No se usa ambos USB driver y USB legacy teclado al mismo tiempo. Incapacitar "USB Keyboard Soportar" si no hay USB driver en su sistema operativo.

Advanced Chipset Features > USB Mouse Soportar

USB Mouse Soportar

Enabled

Disabled

Para capacitar o incapacitar <u>USB</u> ratón driver dentro de BIOS.

Advanced Chipset Features > OnChip Sonido

OnChip Sonido

Enable

Disable

Para capacitar o incapacitar el driver de onboard audio.

Advanced Chipset Features > CPU to PCI Write Buffer

CPU to PCI Write

Buffer

Enable

Disable

Este artículo capacita o deja el CPU to PCI write buffer. Buffer es la memoria intermedia

Advanced Chipset Features > PCI Dynamic Bursting

PCI Dynamic Bursting

Enable

Disable

Si se capacita el PCI dynamic bursting (reventar), se capacita reventar transferencia de datos.

Advanced Chipset Features > PCI Master 0 WS Write

PCI	Master	0	ws
Write	<u>)</u>		
Enab	le		

"Enabled" para capacita escribir to PCI Bus con cero estado de espera (0 wait state).

Advanced Chipset Features > PCI Delay Transaction

PCI Delay Transaction

Enable

Disable

Disable

Este artículo controla la función de demorarse del VIA 586A chipset (Intel PCI a ISA bridge) para cumplir el estado latente de PCI ciclos a o desde ISA bus. Puede capacitarlo-dejarlo si hay problema de ISA compatibilidad.

Advanced Chipset Features > PCI#2 Access #1 Retry

PCI#2	Access	#1
Retry		

Enable

Disable

Este artículo capacita o deja el sistema para PCI#2 a enviar nuevo señal a PCI#1 para parar transferencia de los datos.

Advanced Chipset Features > AGP Master 1 WS Write

AGP Ma	aster	1	ws
<u>Write</u>			
Enable			
Disable			

"Enabled" para capacitar AGP a escribir los datos de textura a memoria principal directamente en estado de espera (Wait state). Estado de espera puede demorar AGP y así aumentar compatibilidad.

Advanced Chipset Features > AGP Master 1 WS Read

AGP I	Master	1	ws
Read			
Enable			
Disable			

"Enabled" para capacitar AGP a leer los datos de textura a memoria principal directamente en estado de espera (Wait state). Estado de espera puede demorar AGP y así aumentar compatibilidad.

Advanced Chipset Features > Memory Parity / ECC Check

Memory Parity / ECC Check

Enable

Disable

Para capacitar o incapacitar la inspección de memoria (<u>ECC</u> function). El ECC algorithm puede detectar doble bit error y automaticalmente correctar error de solo bit.

Perifericos Integrados (Integrated Peripherals)

Esta pantalla se presenta si elege opción "Integrated Peripherals" desde menú principal. Esta opción permitelo configurar los caracteristicas de I/O.

```
CMOS Setup Utility - Copyright (C) 1984-2000 Award Software
                           Integrated Peripherals
                               Enabled |
  OnChip IDE Channel0
                                                               Item Help
  OnChip IDE Channell
                               Enabled |
  IDE Prefetch Mode
                               Enabled.
                                                       Menu Level
  Primary Master
                    PIO
                               Auto
  Primary Slave
                    PIO
                               Auto
  Secondary Master PIO
                               Auto
  Secondary Slave
                    PIO
                               Auto
  Primary Master
                    UDMA
                               Auto
  Primary Slave
                    UDMA
                               Auto
  Secondary Master UDMA
                               Auto
  Secondary Slave UDMA
                               Auto
  Init Display First
                               PCI Slot
  IDE HDD Block Mode
                               Enabled
  Onboard FDD Controller
                               Enabled
  Onboard Serial Port 1
                               Auto
  Onboard Serial Port 2
                              Disabled
 x UART 2 Mode
 x IR Function Duplex
 x TX.RX inverting enable
†l→+:Move Enter:Select +/-/PU/PD:Value F10:Save
                                                     ESC: Exit F1: General Help
   F5:Previous Values
                          F6:Fail-Safe Defaults
                                                    F7:Optimized Defaults
```

Esta página es la más baja mitad de sub menú de Integrated Peripherals.

```
CMOS Setup Utility - Copyright (C) 1984-2000 Award Software
Integrated Peripherals
  IDE HDD Block Mode
                                Enabled.
                                                                 Item Help
   Onboard FDD Controller
                                Enabled.
   Onboard Serial Port 1
                                                         Menu Level
                                Auto
   Onboard Serial Port 2
                               Disabled
 x UART 2 Mode
 x IR Function Duplex
x TX,RX inverting enable
   Onboard Parallel Port
                                378/IRO7
  Onboard Parallel Mode
                               Normal
   ECP Mode Use DMA
   Parallel Port EPP Type
                                EPP1.9
   Onboard Legacy Audio
                                Enabled.
   Sound Blaster
                               Disabled.
   SB I/O Base Address
                                220H
   SB IRO Select
                                IRO 5
   SB DMA Select
                               DMA 1
  MPU-401
                               Disabled
  MPU-401 I/O Address
                                330-333H
   Game Port (200-207H)
                                Enabled |
| ↑| → ←: Move Enter: Select
                          +/-/PU/PD:Value F10:Save
                                                       ESC:Exit F1:General Help
                           F6:Fail-Safe Defaults
    F5:Previous Values
                                                      F7:Optimized Defaults
```


Integrated Peripherals > OnChip IDE Channel0 Integrated Peripherals > OnChip IDE Channel1

OnChip IDE Channel0

Enabled

Disabled

Este parámetros capacitan o dejan dispositivos IDE conectado al conector IDE primario.

Integrated Peripherals > IDE Prefetch Mode

IDE Prefetch Mode

Enabled

Disabled

Este artículo capacita o deja modo de IDE prefetch (ir a buscar).

Integrated Peripherals > Primary Master PIO
Integrated Peripherals > Primary Slave PIO
Integrated Peripherals > Secondary Master PIO
Integrated Peripherals > Secondary Slave PIO

Primary Master PIO

Auto

Mode 1

Mode 2

Mode 3

Mode 4

"Auto" para capacitar la auto identificación de velocidad de HDD. El modo PIO especifica el razón de transferencia de datos de HDD. Por ejemplo: Razón de modo 0 para 3.3MB/s, modo 1 para 5.2MB/s, modo 2 8.3MB/s, modo 3 11.1MB/s y modo 4 16.6MB/s. Si la realización del Disco Duro llega inestable, puede tomar un modo lento manualmente.

Integrated Peripherals > Primary Master UDMA
Integrated Peripherals > Primary Slave UDMA
Integrated Peripherals > Secondary Master UDMA
Integrated Peripherals > Secondary Slave UDMA

Primary Master UDMA

Auto

Disabled

Este artículo permite lo a establecer modo U <u>ATA/66</u> para el Disco Duro IDE conectado al primario IDE conector.

Integrated Peripherals > Init Display First

Init Display First

PCI Slot

AGP

Si se instala una tarjeta PCI VGA y una tarjeta AGP al mismo tiempo, este artículo lo permite a establecer o PCI o AGP como VGA primario (initialized VGA)

Integrated Peripherals > IDE HDD Block Mode

IDE HDD Block Mode

Enabled

Disabled

Si su disco duro IDE soporta "Block Mode", puede elegir **Enabled** para automático detección de óptimo numero de bloque leer/escribir (block read/write) per sector soportado por el disco duro IDE.

Integrated Peripherals > Onboard FDD Controller

Onboard	FDD
<u>Controller</u>	
Enabled	
Disabled	

"Enabled" para conectar el unidad de floppy disco a onboard conector de floppy disco en lugar de la tarjeta de controlador separado. Elegir "Disabled" si se usa una tarjeta de controlador separado.

Integrated Peripherals > Onboard Serial Port 1 Integrated Peripherals > Onboard Serial Port 2

Onboard Serial Port 1

Auto

3F8/IRQ4

2F8/IRQ3

3E8/IRQ4

2E8/IRQ3

Disabled

Para asignar direcciónes y interrumpir para el serial puerto en placa. Predeterminado valor es **Auto**.

Nota: Si se usa tarjeta de red, asegura que el IRQs no contradicen

Integrated Peripherals > UART 2 Mode

UART 2 Mode

Standard

HPSIR

ASKIR

Se puede configurar este artículo solo si el "Onboard Serial Port 2" es capacitado (enabled). Éste especifica el modo de serie puerto 2 (serial Port 2).

AK33

Standard (Estandar)

Funcionarse en normal modo. (valor predeterminado).

HPSIR

Permitir la comunicación de infrarrojo serie al maximo razón 115K baud.

SASKIR

Permitir la comunicacion de infrarrojo serie al maximum razón 19.2K baud.

Integrated Peripherals > IR Function Duplex

IR Function Duplex

Full

Half

Elegir función de duplex de IR (infrarrojo). Normalmentey, "full" para lleno duplex (más rápido), porque transferencia de datos bi-direccional al mismo tiempo. "Half" para medio duplex

Integrated Peripherals > TX, RX inverting enable

TX,	RX	inverting
<u>enab</u>	<u>le</u>	
No, N	lo	
No, S	Sí.	
Sí, N	0	
Sí, Si	Í	

Elegir modo de RxD (Recibir Datos) y TxD (Transmitir Datos) para UART. Por ejemplo, IR , módem, etc. Normalmente, se recomanda que mantener valer predeterminado (default) y referir a manual para su dispositivos.

Integrated Peripherals > Onboard Parallel Port

Onboard Parallel Port

3BC/IRQ7

378/IRQ7

278/IRQ5

Disabled

Este parámetro es para especificar de dirección y interrumpir (Interrupt) del onboard paralelo puerto.

Nota Si se usa una tarjeta I/O separado con el aparalelo puerto, asegura que los dirección y IRQs no se contradicen.:

Integrated Peripherals > Onboard Parallel Mode

Onboard Mode	<u>Parallel</u>
Normal	
ECP	
EPP	
ECP/EPP	

Elegir del modo de paralelo puerto . Opciónes están: Normal (SPP, Estandar y Bidirection paralelo Puerto), EPP (Enhanced o aumentado paralelo Puerto) y ECP (Extended o prolongado paralelo Puerto).

SPP (Estandar y Bidireccional paralelo Puerto)

SPP is the IBM AT y PS/2 compatible modo.

EPP (Enhanced paralelo Puerto)

EPP aumentar el paralelo puerto por directamente escribir/leer datos a/desde paralelo puerto sin pestillo.

ECP (Extendedparalelo Puerto)

ECP Prolongar el paralelo puerto para DMA y RLE (Run Largo codificado) compresión y decompresión.

1

Integrated Peripherals > ECP Mode Use DMA

ECP Mode Use DM	<u>4</u>
3	

Elegir canal de DMA de modo ECP.

Integrated Peripherals > Parallel Port EPP Type

Parallel	Port	EPP
<u>Type</u>		
EPP1.7		
EPP1.9		

Para elegir EPP modo de paralelo puerto.

Integrated Peripherals > Onboard Legacy Audio

Onboard	Legacy
<u>Audio</u>	
Enable	
Disable	

Capacitar (Enabled) o dejar (Disabled) on-board audio de modo de legacy que significar DOS modo, que se soporta unos viejo software.

Integrated Peripherals > Sonido Blaster

Sonido Blaster

Enable

Disable

Esta placa madre provee el audio on-chip compatible con Sonido Blaster Pro. Capacitar (**Enabled**) la función debajo de modo DOS.

Integrated Peripherals > SB I/O Base Address

SB I/O Base Address

220H, 240H, 260H, 280H

Elegir valer para dirección del/O base de onboard audio.

Integrated Peripherals > SB IRQ Select

SB IRQ Select

IRQ5, IRQ7, IRQ9,

IRQ10

Elegir valor de IRQ para on-board audio.

Integrated Peripherals > SB DMA Select

SB DMA Select

DMA0, DMA1,

DMA2, DMA3

Elegir valor para on-board audio DMA.

Integrated Peripherals > MPU-401

MPU-401

Enabled

Disabled

Capacitar (Enabled) o dejar (Disabled) función compatible con Puerto MPU-401.

Integrated Peripherals > MPU-401 I/O Address

MPU-401 I/O Address

300-303H

310-313H

320-323H

330-333H

Elegir dirección I/O de MIDI puerto.

Integrated Peripherals > Game Port (200-207H)

Game Port (200-207H)

Enabled

Disabled

Capacitar o incapacitar función a asignar una dirección para el puerto de juego.

Gestión del Suministro (Power Management Setup)

Este "Power Management Setup" (Configurar la gestión del suministro) permitelo a controlar la verde características de la placa madre. Ver siguiente pantalla:

```
CMOS Setup Utility - Copyright (C) 1984-2000 Award Software
                             Power Management Setup
   ACPI function
                                 Enabled |
                                                                    Item Help
▶ Power Management
                                 Press Enter
   ACPI Suspend Type
                                 S3(STR)
                                                            Menu Level
   PM Control by APM
                                 Yes
   Video Off Option
                                 Suspend -> Off
   Video Off Method
                                 V/H SYNC+Blank
   MODEM Use IRO
   Soft-Off by PWRBTN
                                 Instant-Off
▶ Wake Up Events
                                 Press Enter
| ↑| → ←: Move Enter: Select
                           +/-/PU/PD:Value F10:Save ESC:Exit F1:General Help F6:Fail-Safe Defaults F7:Optimized Defaults
    F5:Previous Values
```

Power Management Setup > ACPI Function

ACPI Function

Enabled

Disabled

Elegir "Enabled" para un sistema operativo capacitado con ACPI a evitar errores inexperado. Elegir "Disabled" para un modo APM.

Power Management Setup > Power Management > Power Management

Power Management

Max Saving

Min Saving

User Define

Elegir los modos de ahorrar las energías para su sistema. "Disabled" para apagar las funciónes. Elegir "User Define" para establecer específicos par[ametros.

Modo	Suspender	Energía HDD cerrarse
Min Saving	1 hour	15 min
Max Saving	1 min	1 min

Power Management > Power Management > HDD Power Down

HDD Power Down

Disabled, 1 Min,, 15 Min

Capacitar el ocioso tiempo de IDE HDD antes de entrar un estado de energía cortado. Predeterminado "Disabled" para incapacitar la función

Power Management Setup > Power Management > Doze Mode

Doze Mode

Disabled, 1 Min, 2 Min, 4 Min., 6 Min, 8 Min, 10 Min, 20 Min, 30 Min, 40 Min, 1 Hour Para especificar el periodo de tiempo del sistema inactivo(no hacer alguna tarea) antes de entrar el modo de siestecita (Doze modo). Las actividades de un sistema es descubrido por examinar las IRQ señales o otros sucesos (como I/O).

Power Management > Power Management > Suspend Mode

Suspend Mode

Disabled, 1 Min, 2 Min, 4 Min., 6 Min, 8 Min, 10 Min, 20 Min, 30 Min, 40 Min. 1 Hour Para especificar el periodo de tiempo del inactivo sistema antes de suspender las actividades(entrar Suspend modo). El "Suspend modo" puede ser Power On Suspend o Suspend to Hard Drive, elegido by "Suspend Modo Opción".

Power Management Setup > ACPI Suspend Type

ACPI Suspend Type

S1 (POS)

S3 (STR)

Para elegir tipo de suspender. S1 es Power On Suspend (suspender arrancar energía) y S3 es Suspender a RAM.

Power Management Setup > PM Controlled by APM

PM	Controlled	by
<u>APM</u>		
Sí		
No		

Si el "Max Saving" es elegido en el "Power Management" artículo, puede usar este sucero a transferir el mgestión de energía a APM (Avanzado gestión de energía) y realzar función de ahorrar energía, como parar interno reloj del CPU.

Power Management > Video Off In Suspend

Video Off In Suspend

 $Suspend \, \to \, Off \, (Default)$

All Modos → Off

Always On

Para especificar el modo de video (monitor) en el "Suspend modo". "Off" para suspender actividad de monitor. "Always on" para queder encendida.

Power Management > Video Off Method

Video Off Method

V/H SYNC + Blank (Default) DPMS Suppuerto Blank Screen Para especificar el modo de suspendido monitor. "Blank Screen" escribir en blanco a video buffer. "V/H SYNC+Blank" para BIOS a controlar VSYNC y HSYNC señales. Este funci[on es solo para DPMS (Display Power Management standard) monitor. El DPMS modo usa DPMS función proveido por el tarjeta VGA.

Power Management > Módem Use IRQ

Módem Use IRQ

3 (Default); 4; 5; 7; 9; 10: 11: NA

Para establecer un IRQ (Interrupt Request) para el módem.

Power Management Setup > Soft-Off by PWRBTN

Soft-Off by PWRBTN

Delay 4 sec.

Instant-Off

Para elegir el modo de apagar energía en ACPI sistema. Con soporte de hardware, elegir **Delay 4 sec** para controlar suministro a suspender o apagar por el interruptor botón en el anterior panel. Si el botón es apretado menos de 4 segundos al encendido sistema, el sistema entra "Suspend modo". Si el bótón es apretado más de 4 segundos, el sistema es apagado. El predeterminado valer es **Instant-Off** para el control de inmediato alto de suministro sin aprestar el botón para 4 segundos y no hay suspendido estado.

Power Management Setup > Wake up Events > VGA

VGA

On

Off

"On" para capacitar VGA despertarse durante la transición de modo de suministro. "Off" para dejar VGA despertarse.

Power Management Setup > Wake up Events > LPT & COM

LPT & COM

LPT/COM

NONE

LPT

COM

Para especificar el modo de LPT/COM puerto durante el transición de estado de suministro.

Power Management Setup > Wake up Events > HDD & FDD

HDD & FDD

On

Off

Para especificar el modo de HDD/FDD durante el transición de estado de suministro.

Power Management Setup > Wake up Events > PCI Master

PCI Master

On

Off

Para especificar de modo de PCI Máster durante transición de estado de suministro

Power Management Setup > Wake up Events > PowerOn by PCI Card

PowerOn by PCI Card

Enabled

Disabled

Para capacitar o dejar la función la tarje de Wake On PCI. Predetermonado "Disabled" es para dejar función.

Power Management Setup > Wake up Events > Modem Ring Resume

Modem	Ring
Resume	
Enabled	
Disabled	

Para capacitar o dejar la función de la Wake On Módem.

Predetermonado "Disabled" es para dejar función.

Power Management Setup > Wake up Events > RTC Alarm Resume

RTC Alarm Resume

Enabled

Disabled

Para capacitar o dejar la función de la Wake On RTC Timer. Predetermonado "Disabled" es para dejar función.

Power Management Setup > Wake up Events > Date (of Month)

Date (of Month)

0, 1,, 31

Este artículo es demostrado si se capacita el "Wake On RTC Timer" opción. Ahora especificar el fecha to despertar el sistema. Por ejemplo, elegir 15, a despertar sistema el 15th de todos los meses.

Consejo: Ajustar este artículo a 0 y despertar el sistema de tiempo specificado (que se establace temporizador de Wake On RTC) toda dia.

Power Management Setup > Wake up Events > Resume Time (hh:mm:ss)

ResumeTime

(hh:mm:ss)

hh:mm:ss

Este artículo es demostrado si se capacita la RTC Wake Up Timer opción. Ahora especificar el tiempo a despertar el sistema

Power Management Setup > Wake up Events > Primary INTR

Primary INTR

ON

OFF

Para capacitar (On) o dejar(Off) la detección de IRQ3-15 o NMI interrupt suceros durante transición de estado de suministro. Normalmente, éste es para tarjeta de network.

Power Management Setup > Wake up Events > IRQs Activity Monitoring

IRQs Activity Monitoring

IRQ3 (COM 2)

IRQ4 (COM 1)

IRQ5 (LPT 2)

IRQ6 (Floppy Disk)

IRQ7 (LPT 1)

IRQ8 (RTC Alarm)

IRQ9 (IRQ2 Redir)

IRQ10 (Reserved)

IRQ11 (Reserved)

IRQ12 (PS/2 Mouse)

IRQ13 (Coprocessor)

IRQ14 (Hard Disk)

IRQ15 (Reserved)

Estos artículos capacitar (Enabled) o dejar(Disabled) la detección de activitidades de dispositivos por IRQs durante transición de estado de suministro.

Configurar PnP/PCI

Elegir" PNP/PCI Configuration" desde el menú principal para configurar los PCI dispositivos instalado en su sistema. El pantalla siguiente demostraráse.

CMOS Setup Utility - Copyright (C) 1984-2000 Award Software PNP/PCI Configurations				
PNP OS Installed Reset Configuration Data Resources Controlled By X IRQ Resources X DMA Resources PCI/VGA Palette Snoop Assign IRQ For VGA Assign IRQ For USB	No Disabled Auto(ESCD) Press Enter Press Enter Disabled Enabled Enabled	Item Help Menu Level ▶ Select Yes if you are using a Plug and Play capable operating system Select No if you need the BIOS to configure non-boot devices		
		ESC:Exit F1:General Help 7:Optimized Defaults		

PNP/PCI Configuration > PnP OS Installed

PnP OS Installed

Sí

No (Default)

Normalmente, los PnP resources son asignado por BIOS durante <u>POST</u> (Power-On Self Test). Si se usa un <u>PnP</u> sistema operativo(como Windows 95), elegir S1 a informar BIOS para configurar solo recursos para arrancar (VGA/IDE o SCSI). Otro recursos asignará por PnP sistema.

PNP/PCI Configuration > Reset Configuration Data

Reset Configuration Data

Enabled

Disabled (Default)

En caso del conflicto después que se asigna los IRQs o configura su sistema, puede capacitar esta función para restablecer la configuration y reasignar los IRQs, DMás, y I/O dirección

PnP/PCI Configurations > Resources Controlled By

Resources Controlled

<u>By</u>

Auto (ESCD)

Manual

" Manual " para asignar manualmente los IRQs y DMás a dispositivos de ISA y PCI. "Auto" para auto-configurar la función.

PnP/PCI Configurations > IRQ Resources

IRQ-3 assigned to

IRQ-4 assigned to

IRQ-5 assigned to

IRQ-7 assigned to

IRQ-9 assigned to

IRQ-10 assigned to

IRQ-11 assigned to

IRQ-12 assigned to

IRQ-14 assigned to

IRQ-15 assigned to

PCI/ISA PnP

Legacy ISA

Si se asigna recursos manualmente, debe asignar cada interrupt a un tipo, dependiente del tipo de dispositivo.

Los IRQsdisponible son: IRQ3 (COM2), IRQ4 (COM1), IRQ5 (Red/Sonido o Otros), IRQ7 (impresora o Otros), IRQ9 (Video or Otros), IRQ10 (SCSI or Otros), IRQ11 (SCSI or Otros), IRQ12 (PS/2 ratón), IRQ14 (IDE1), IRQ15 (IDE2).

PnP/PCI Configurations > DMA Resources

DMA-0 assigned to DMA-1 assigned to

DMA-3 assigned to DMA-5 assigned to

DMA-6 assigned to

DMA-7 assigned to

PCI/ISA PnP

Legacy ISA

Si recursos son controlados manualmente, asigna cada DMA canal a un tipo, según el tipo de dispositivo usado al DMA canal.

PnP/PCI Configurations > PCI/VGA Palette Snoop

PCI/VGA	Palette
<u>Snoop</u>	
Enabled	
Disabled	

Para capacitar la tarjeta VGA PCI a quedar callado (asi prevenir conflicto) cuando registros de paleteta(de colores) son puesto al día (por ej., aceptar datos sin devolver alguna señales). Se significa que hay las dos tarjetas de PCI de pantalla usando le mismo registro de paleta (como MPEG o tarjeta de Video a VGA PCI). En tal caso, PCI VGA se queda callado mientras MPEG/Video queda funcionar normalmente.

PNP/PCI Configuration > Assign IRQ For VGA

Assign IRQ For VGA

Enabled (Default)

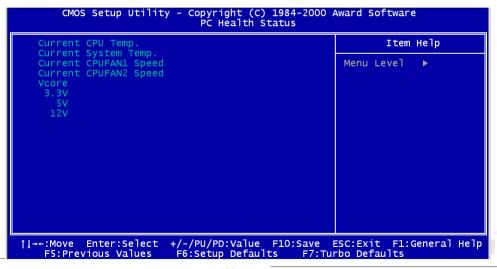
Disabled

Para capacitar restablecer configuraciónes, en caso de los conflictos después de asignar IRQs o configurar el sistema. "Enabled" para reasignar el IRQ para VGA automaticamente.

PNP/PCI Configuration > Assign IRQs For USB

Assign IRQ For USB

Enabled (Default)


Disabled

Para capacitar restablecer configuraciónes, en caso de los conflictos después de asignar IRQs o configurar el sistema. "Enabled" para reasignar el IRQ para USB automaticamente.

Estados de salud de PC (PC Health Status)

Este BIOS detecta automatically los parametros de los estados del sistema como CPU temperatura, velocidad de fan deCPU, voltaje del CPU y voltaje de la placa madre. Desde los datos, los estatos de operación del sistema son demostrado.

Cargar Configuraciónes predeterminados (Load Setup Defaults)

La "Load Setup Defaults" opción provee óptimo configuraciónes para óptimo realización de sistema . Óptimo configuraciónes son más seguro que Turbo configuraciónes. Todosrreportaje de pruebas y control de calidad de verificaión, compatibilidad/reliabilidad son basado sobre "Load Setup Defaults". Se recomenda estas configuración para una normal operación.No "Load Setup Defaults" es más lento para esta placa madre. Para deshacer una inestable problema, puede cambiar manualmente los parámetros en "BIOS Features Setup" y "Chipset Features Setup" a tiener más lento y seguro configuración.

```
CMOS Setup Utility - Copyright (C) 1984-2000 Award Software
 Standard CMOS Features
                                         ► Frequency/Voltage Control
                                           Load Setup Defaults
 ▶ Advanced BIOS Features
 ▶ Advanced Chipset Features
 ▶ Integrated Peripherals
                                           Set Supervisor Password
▶ Power Management Setup
                                           Set User Password
▶ PnP/PCI Configurations
                                           Save & Exit Setup
 ▶ PC Health Status
                                           Exit Without Saving
Esc : Quit
                F9 : Menu in BIOS
                                        1 1 → ← : Select Item
F10 : Save & Exit Setup
                       Time, Date, Hard Disk Type...
```

Cargar Turbo Predeterminado (Load Turbo Defaults)

la "Load Turbo Defaults" opción provee mejor realización que "Load Setup Defaults" para mejor realización desde la placa madre. No Turbo configuración sufre pruebas de reliabilidad y compatibilidad, pero es probado con solo limitado configuración y dispositivos (for example, una sistema que tiene solo una tarjeta de VGA y dos DIMMs). **Usa Turbo configuración sólo cuando se conoce todos artículos de menú de "Chipset Setup"**. Turbo configuración normalmente aumenta la realización desde 3% a 5%, dependiente en el chipset y Aplicación.

Establecer Contraseña de Supervisor

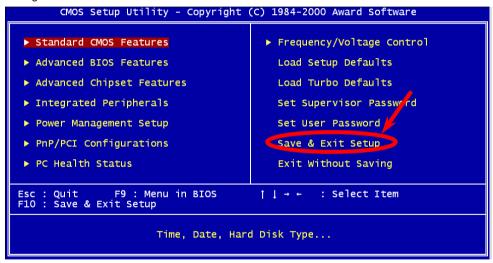
La contraseña prevene unautorizado uso de su computador. Si se establece una contraseña, el sistema provocará la correcto contraseña antes de arrancar o acceso a Setup.

Para borrar contraseña, sólo presionar la tecla< Enter> cuando es movido a entrar nueva contraseña. La pantalla entonces demostra la mensaje confirmando que la contraseña ha sido borrado.

Establecer Contraseña de Usuario

La contraseña prevene unautorizado uso de su computador. Si se establece una contraseña para un usuario, el sistema provocará la correcto contraseña antes de arrancar o acceso a Setup.

Para establecer una contraseña:


- Al aviso, entrar la contraseña. La contraseña puede ser hasta 8 alphanumero carácters. Cuando se entran los characteres, se demostra como asteriscos en la caja de contraseña sobre la pantalla.
- 2. Después de introducir la contraseña, presionar la tecla "Entrar".
- Al siguiente aviso, re-introducir su contraseña y presionar la tecla "Entrar" otro vez para confirmar la nueva contraseña. Después de entrado, la principal pantalla se demostrará automaticalmente.

Para borrar contraseña, sólo presionar la tecla< Enter> cuando es movido a entrar nueva contraseña. La pantalla entonces demostra la mensaje confirmando que la contraseña ha sido borrado.

Guardar y Salir Configuración (Save & Exit Setup)

Esta función es para automaticalmente guardar todos valores de CMOS values antes de salir Configuración.

Salir sin Guardarse (Exit without Saving)

Esta función es para salir Setup sin guardar algunos valeres cambiados de CMOS. No use la opción si quiere guardar las nuevas configuraciónes.

NCR SCSI BIOS y Driveres

Debido a espacio limitado en Flash ROM, alguna versiónes de BIOS no incluuen NCR 53C810 SCSI BIOS (soportar DOS, Windows 3.1 y OS/2) en el BIOS del sistema. Muchas tarjetas de SCSI tienen un SCSI BIOS suya en tarjeta. Para mejor realización de sistema, puede usar los driveres de tarjeta de NCR SCSI o los dentro de su sistema. Para más información, referir el manual de instalación de su tarjeta de NCR 53C810 SCSI.

Modernizar BIOS (BIOS Upgrade)

En poner su placa madre al día, hay que aceptar la posibilidad de fallo del BIOS . Si su placa madre está trabajando sobre una estable condición, y no se tropezan con serios fallos desde el BIOS, se recomenda que no poner el BIOS al dia.

Todavia, para poner el BIOS al día, ASEQURA que usa el correcto revisión de BIOS para el modelo de la su placa madre.

Programa de AOpen Easy Flash para poner el BIOS al día es más fácil de usar que tradicional método. El binario fichero de <u>BIOS</u> y la rutína para poner al día son unidos juntos. Necesita ejecular sólo una comando a completar el trámites.

Caution: Programás de AOpen Easy Flash BIOS son compatible con el Award BIOS. Al día de la Nota, no las programs van dirigidas a AMI BIOS que presentarse principalmente sobre las antiguas placa 486 y algunas placa de Pentium temprano. Leer README comprimido en el paquete de BIOS antes de poner BIOS al día, y seguir las instrucciónes con cuidado para minimizar el peligro de fallo.

Abajo son trámites para poner el BIOS al día por el fácil de usar program: (para Award BIOS sólo)

- Transferir el nuevo zipped fichero para modernizar su BIOS desde sitio web de AOpen. Por ejemplo, MX33102.ZIP.
- Ejecutar shareware PKUNZIP (http://www.pkware.com/) que soportar vrios sistemás operativo para sacar el binario fichero de BIOS y el utilidad para modernizarse.
 Or Winzip (http://www.winzip.com/) en medio de Windows .
- Guardar el comprimido fichero en uno floppy disk para arrancar sistema.
 Por ejemplo, MX33102.BIN & MX33102.EXE
- 4. Reiniciar el sistema en DOS modo sin transferir alguna controlador de memoria (such as EMM386) o driver de dispositivo. Se necesita alrededor 520K del espacio de memoria libre.
- 5. Ejecutar A:\> MX33102. La programa hará el resto de poner al día.

NO APAGAR EL SISTEMA DURANTE PONER AL DÍA HASTA QUE EL SISTEMA LA INCITA!!

6. Reiniciar el sistema y apretar a enter BIOS setup, elegir "Load Setup Defaults", entonces "Save & Exit Setup". Terminado!

Aviso: Su original configuraciónes de BIOS y información de PnP son reemplazados por nuevo BIOS ahora. Hay que reconfigurar los parámetros en BIOS Setup y re-instalar Win95/Win98 y todos tarjetas para que su sistema y su nuevo BIOS sean compatible el uno al otro.

Sobrereloj (Overclocking)

Como uno delantero frabricante en la industria de las placa madre, AOpen siempre atende lo que los clientes quieren y desarrolla productos para cumplir diferentes requisitos. Reliabilidad, compatibilidad, technologia delantero y caracteristica fácil de usar son nuestros básicos objectivos en diseñar las placas madres. Además, muchos usuarios de energía nos están siempre exhortandos a proveer más alta realización del sistema por los sobrerelojes que los llamamos "Sobrerelojadores" (overclockers).

.

Aviso: Este diseño de este producto sigue el diseño de CPU y vendedores de chipsets. Te aconsejamos no hacer las configuraciónes beyond las especificacipones de este producto porque está corriendo el riesgo de dañnar su sistema o los daos importante. Todavia, antes de sobrereloj, se asegura que todos componentes en placa puede tolerar demásiados configuraciónes, especialmente sobre CPU, DRAMs, Disco Duros, y tarjeta de AGP VGA.

Consejo: Recuerde que el sobrereloj puede causar termico problema. También seguro que el fan de CPU y el plate para termico disipación pueden deshacer los calor generado por sobrereloj.

VGA y HDD

VGA y HDD son los principales componentes en sobrereloj. Para su referencia, las listas de Aopen web páginas siguiente tienen los datos de nuestros sobrereloj de éxito en el laboratorio. Recuerde que AOpen no garantiza que puede tener éxito en sobrereloj cada vez.

VGA: http://www.aopen.com.tw/tech/report/overclk/mb/vga-oc.htm

HDD: http://www.aopen.com.tw/tech/report/overclk/mb/hdd-oc.htm

Glosario

AC97

Fundamentalmente, especificación AC97 divide circuito sonido/módem en dos partes: digital procesador y el CODEC. Ellos están vinculado por link bus AC97 para analogue I/O. Como digital procesador puede ser establecido en el principal chipset de placa madre, el coste de onboard solución de sonido/módem puede ser reducido.

ACPI (Configuración avanzado & Interfaz de Fuente)

ACPI es el especificación PC97 (1997) de la gestión de fuente. Está para ahorrar más energía por el completo gestión de fuente a sistema operativo y para evitar <u>BIOS</u>. El chipset o súper chip I/O debe proveer el interfaz para estándar registro a sistema operativo (such as Windows 98). Está un poco parecido a interfaz <u>PnP</u> de registro. ACPI define momentaneo interruptor ATX por software a controlar el transición de estatus de fuente.

AGP (Acelerado Puerto Gráfico)

AGP es un bus interfaz para superior actuación de gráphica 3D. AGP solo soporte operación de leer/escribir a memoria en el modo de uno-a-uno de unica-amo unica-esclavo. AGP utiliza ambos filos levantado y bajado de reloj 66MHz para 2X AGP, con razon de transferencia de datos 66MHz x 4byte x 2 = 528MB/s. AGP está avanzando a modo 4X, 66MHz x 4byte x 4 = 1056MB/s. AOpen está el compañia primera a soportar placa madre con AGP 4X por ambos AX6C (Intel 820) y MX64/AX64 (VIA 694x), desde octubre 1999.

AMR (Riser Audio/Módem)

El circuito <u>CODEC</u> de sonido/módem solución AC97 puede ser establecido en placa o a través del tarjeta riser (tarjeta AMR) que conectar la placa by el conector AMR.

CD en Pack de Primo de AOpen

Un CD está metido al paquete del placa madre AOpen a proveer drivers, Acrobat Reader en línea PDF manual y otros utilidades útiles.

APM

Diferente a <u>ACPI</u>, BIOS controla la mayoría de gestión de fuente APM. AOpen Suspend a disco duro es un bien ejemplo de gestión de fuente APM.

ATA/66

ATA/66 utiliza ambos filos levantado y bajado pero doble el razon de transferencia <u>UDMA/33</u>. Su razon de transferencia está cuatro veces de modo 4 PIO o modo 2 DMA, 16.6MB/s x4 = 66MB/s. Para utilizar ATA/66, nececita especial cable IDE ATA/66.

ATA/100

ATA/100 es una nueva especificación IDE todavia en el curso de progreso. Él utiliza ambos filos levantado y bajado como <u>ATA/66</u>, pero su ciclo de reloj es reducido a 40ns. Su razon de transferencia está (1/40ns) x 2 bytes x 2 = 100MB/s. Para utilizar ATA/100, necesita especial cable IDE 80-wire ,mismo con el ATA/66.

BIOS (Basica Sistema entrada/salida)

BIOS es una colección de rutina/programa que reside en <u>EPROM</u> 0 <u>Flash ROM</u>. BIOS controla dispositivos de entrado/salido y otros dispositivos hardware para placa madre. Fundamentalmente, para aprovechar el caracteristica de hardware portátil, necesita una sistema operativo y drivers a acceder BIOS antes de acceder el dispositivo hardware.

Bus Master IDE (Modo DMA)

El tradicional PIO (I/O por programar) IDE necesita a involucrar el CPU en todos actividades de acceder IDE inclusive esperar el suceso mecanico. Para reducir el cantidad de trabajo del CPU, el bus master IDE mecanismo transfere datos desde/a memoria sin interrumpir el CPU, y libera el CPU a funcionar al mismo tiempo durante se transferen los datos entre memorias y mecanismo IDE. Desde luego, se necesitan el bus master IDE driver y el bus master IDE HDD para soportar el bus master IDE modo.

CODEC (Codificar y Descifrar)

CODEC es un circuito que puede hacer conversión digital a analog y viceversa. Es el parte de la solución sonido/Módem AC97 .

DIMM (Modulo de Memoria Doble en Línea)

Socket DIMM tiene totalmente 168 pines y soporte datos 64'bit. Está puede ser de solo o doble lados, the golden finger signals on each side of PCB are different, that is why it was called Dual In Line. Almost all DIMMs are made by SDRAM, which operate at 3.3V. Note that some old DIMMs are made by FPM/EDO and only operate at 5V. Do not confuse them with SDRAM DIMM.

ECC (Comprobar Error y Corrección)

El modo ECC necesita 8 bits ECC para datos 64-bit. Una vez se accede memoria, bits ECC son puesto al día y son comprobado por un especial algoritmo. El algoritmo ECC tiene el habilidad a descubrir error doble-bit automaticamente y correge error unico-bit mientras modo paridad puede solo descubrir error unico-bit.

EDO (Modo Extended de datos salido Data)

El technología de DRAM EDO está muy semejante a FPM (Fast Page Mode). Diferente a tradicional FPM que llegar a ser tri-estados de los datos salidos en la memoria a comenzar la actividad pre-charge, EDO DRAM guarda los datos válido hasta que siguiente memoria accede el ciclo. Eso es semejante a el efecto de tubería que lleva un estado de clock.

EEPROM (Electronic Erasable Programmable ROM)

EEPROM o E²PROM está semejante a <u>Flash ROM</u> que puede ser re-programado por electrónica señales, pero las technologías de interfaces usados están diferentes. El tamáno de EEPROM es mucho menor que flash ROM.

EPROM (Erasable Programmable ROM)

El tradicional placa madre almacena clave de BIOS en EPROM puede ser borrado por luz ultra-violet (UV). Si BIOS debe ser modernizado, ante todos separar EPROM desde la placa madre, limpiarlo con luz UV, re-programarlo, y entonces reestablecerlo al placa madre.

EV6 Bus

El Bus EV6 es el technología en el Alpha processor por Digital Equipment Corporation. EV6 bus utiliza ambos clock filos levantado y bajado a transferir los datos, que está semejante a SDRAM DDR o Bus IDE ATA/66.

Velocidad de Bus EV6 = Reloj Externo de bus CPUx 2.

Por ejemplo, 200 MHz Bus EV6 realmente utiliza 100 MHz externo clock de bus CPU, pero el real velocidad es 200 MHz.

FCC DoC (Declaration of Conformity)

El FCC DoC es el declaración de ajuste del componente al patrón de regulación FCC EMI. Componente DIY (tal como placsa madre) sin el escudo de caja debe ajustarse a patrón FCC para aplicar al etiqueta DoC.

FC-PGA

FC significa "Flip Chip", FC-PGA es nuevo paquete de Intel para CPU de Pentium III para SKT370 socket, pero necesita una nueva placa madre con nuevo diseño. Es decir, la placa madre para este CPU FC-PGA 370 debe ser rediseñado. Intel va a repartir CPU de FC-PGA 370 y interrumpir CPU de slot 1.

Flash ROM

Flash ROM puede ser re-programado por electrónicos señals. Es más fácil para BIOS ser modernizado por una utilidad de modo flash. Es también más fácil de ser infectado por virus. Because of increase of new functions, BIOS size is increased from 64KB to 256KB (2M bit). AOpen AX5T is the first board to implement 256KB (2Mbit) Flash ROM. Now flash ROM size is moving to 4M bit on AX6C (Intel 820) and MX3W (Intel 810) motherboard.

FSB (anterior Side Bus) Reloj

FSB Reloj means CPU external bus reloj. CPU internal reloj = CPU FSB Reloj x CPU Reloj Ratio

I²C Bus

See SMBus.

P1394

Es una norma de serie bus de alto velocidad para los perifericos. Diferente a <u>USB</u> bus de baja o media velocidad, P1394 soporta 50 a 1000Mbit/s y puede ser usado por video cámara, disk y LAN.

Parity Bit (Bit de paridad)

El modo de paridad usa 1 bit de paridad para cada byte. Normalmente es modo de par paridad, es decir, se pone al día los datos de memoria, bit de paridad es ajustado a par número de "1" para cada byte. La próxima vez, si se lee la memoria con un impar número de "1", el error de paridad es ocurrido, es nombrado como la detección de error de único bit.

PBSRAM (Pipelined Burst SRAM)

Para CPU de Socket 7, el leer de un dato de burst necesita cuatro Qword (Qpalabra) (Quad-word, 4x16 = 64 bits). Todavia, PBSRAM solo necesita una vez de desifrar el dirección y automáticamente envia QWords sobrante en CPU por la sucesión predefinido. Normalmente es como 3-1-1-1, totalmente 6 ciclos, mucho más rápido que SRAM asincronizado. PBSRAM es a menuda usado en L2 (level 2) cache del CPU deSocket 7. No CPU para Slot 1 Socket 370 necesita PBSRAM.

PC100 DIMM

SDRAM DIMM que soporta 100MHz CPU FSB bus reloj.

PC133 DIMM

SDRAM DIMM que soporta 133MHz CPU FSB bus reloj.

PDF Format

PDF Format es un formato para electrónico archivos. Puede leer PDF archivos a través de Windows, Unix, Linux, Mac ... con PDF reader (lector). También puede leer PDF archivos a través del explorador de red como IE y Netscape, Note que necesita instalar PDF plug-in primero (Incluido en Acrobat Reader).

PnP (Plug y Play)

La especificación de PnP provee el interface de estandar registro para ambos BIOS y sistema operativo (como Windows 95). Estos registros son usado por BIOS y el sistema para configurar recurso de sistema sin alguno conflicto. Los IRQ/DMA/Memoria automatically son asignado por PnP BIOS o sistema operativo. corriente, asi todos tarjetas PCI y ISA son ya compatible a PnP.

POST (Power-On Self Test)

POST es los tramites de autocomprobación de BIOS durante arrancar sistema. Puede ser primero o secundo pantalla demostrado en su monitor durante arrancar el sistema.

RDRAM (Rambus DRAM)

Rambus es un tipo de tecnología para memoria. Él usa grande transferencia de datos en modo burst. Teóricamente, la transferencia de datos debe de ser más alto que <u>SDRAM</u>. RDRAM trabaja en modo de cascada de canal. Intel 820 solo soporta uno canal de RDRAM, en 16-bit datos, que puede mantener al maximo 32 dispositivos de RDRAM, con ilimitado sockets de <u>RIMM</u>.

RIMM

RIMM es el modulo de 184-pin para memoria. Él soporta la tecnología de memoria <u>RDRAM</u>. un modulo de memoria RIMM puede mantener al maximo 16 dispositivos de RDRAM .

SDRAM (Synchronous DRAM)

SDRAM es un de los tipos de tecnologias DRAM que todavia usa el mismo ciclo de reloj que el host bus del CPU (<u>EDO</u> y FPM son asynchronous – no sincronizado - y no tiene la señal de reloj). Es similar a <u>PBSRAM</u> usar modo de burst de transferencia. SDRAM es 64-bit 168-pin <u>DIMM</u> y ejecutase a 3.3V. AOpen es el primero compañía a soport doble-SDRAM en DIMMs onboard (AP5V), desde Q1 1996

SIMM (Modulo de Memoria Único en línea)

Socket de SIMM es solo 72-pin, y solo de único lado. Las señales de dedo de oro en cada lado de PCB son idéntico. Es por lo que se llama único en línea. SIMM consiste en FPM o <u>EDO</u> DRAM y soporta 32-bit data. SIMM ha sido interrumpido en corriente diseño de placa madre.

SMBus (System Management Bus)

SMBus es llamado I2C bus también. Es un bus con dos alambre electrica para comunicación de componentes (especialmente para semiconductor IC), por ejemplo, para ajustar reloj de generador de reloj para la placa madre sin jumper. La razón de transferencia de SMBus es solo 100Kbit/s, permitir un host (anfitrión) a comunicar con CPU y muchos dispositivos de master (amo) y slaves (esclavos) para enviar / recibir mensajes.

SPD (Serial Presence Detect)

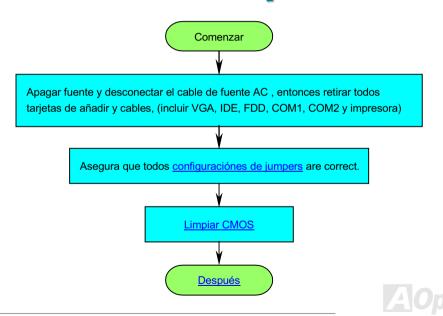
SPD es un pequeño ROM or <u>EEPROM</u> residiendo en el <u>DIMM</u> o <u>RIMM</u>. SPD almacena información de la memoria modulo como cronometraje de DRAM y parámetros de chip. SPD puede ser usado por <u>BIOS</u> para provee mejor cronometraje a el DIMM o RIMM.

Ultra DMA/33

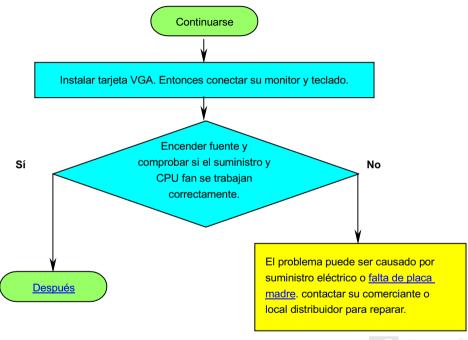
A diferencia de tradicional PIO/DMA modo que solo usa el creciente filo de señal de mandato IDE para transferir datos, UDMA/33 usa ambos creciente y descendente edge, con el razón de transferencia dos veces más que PIO modo 4 o DMA modo 2. 16.6MB/s x2 = 33MB/s

USB (Universal Serial Bus)

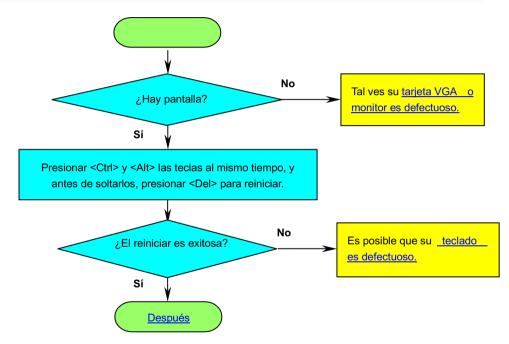
Es un bus de 4-pin de periferico serie que transfere en modo de cascada los perifericos de velocidad bajo/medio (menos de 10Mbit/s) como teclado, ratón, palanca de control, escáner, impresora y módom. Con USB, se elimina los tradicional complejo cables desde panel de atras de su PC.


ZIP file

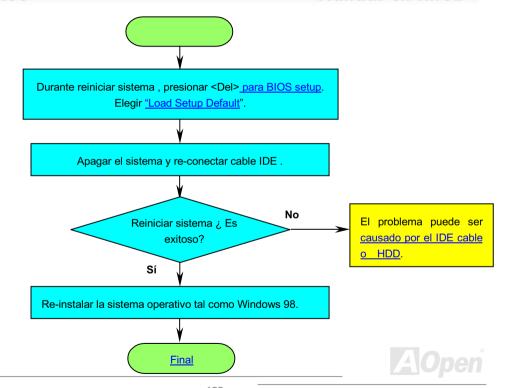
Un formato de archivos comprimido para reducir el tamañno del archivo. Para decomprimir archivos, ejecutar shareware PKUNZIP (http://www.pkware.com/) para DOS y otro sistemas operativos o WINZIP (http://www.winzip.com/) para los sistema de Windows



Resolver las problemas



Manual en línea



Manual en línea

Manual en línea

Soportes tecnicos

Estimada cliente.

Muchas gracias a elegir el producto de AOpen. El proveer el major y el mas rápido servicio a nuestros clientes es nuestro prioritdad primero. Todavia, recibimos numerosos ecorreos y llamados mundialmente todos los días. Para servir cada cliente con tiempo, se recomenda que ocupase de recursos siguiente antes tomer el último solución (Contactar nos). Con su soporte, podemos proveer el major servicio a más clientes.

Muchas gracias a sus soporte!

Equipo de Soporte tecnico de AOpen

Manual en línea: Leer el manual con cuidado y aseguarate que las configuraciónes de los jumpers y los trámitres de las instalactiónes son correctos.

http://www.aopen.com.tw/tech/download/manual/default.htm

Reportaje de prueba: Se recomendamos que elegir placa/tarjeta/dispositivo según reportaje de compatibilidad para montar su PC.

http://www.aopen.com.tw/tech/repuerto/default.htm

FAQ: El último FAQ (Frequently Asked Questions) contene muchas soluciónes para sus problemas.

http://www.aopen.com.tw/tech/fag/default.htm

Descargar Software: Encontrar el tabla ajuntado aquí para el último BIOS/utilidad/ drivers

http://www.aopen.com.tw/tech/download/default.htm

Grupo de Noticias: Sus problemas puede ser contestado por nuestros ingenieros desoporte o usuarios profesional en el grupo de noticias.

http://www.aopen.com.tw/tech/newsgrp/default.htm

Contactar Distribuidora/Revendedor: Nos vendemos los productos a través de revendeores y integradores. Ellos deben conocer su configuración de sistema muy bien y pueden resolver sus problemas más eficiente. De todos modos, los atitudes de servicios son una referencia importante cuando la próxima ves quiere comprar algo otro desde ellos.

Contactarnos: Preparar detallado informaciónes sobre su sistema y sobre los sintoma de errores ante de contactarnos. El número de parte, numero serie y versión de BIOS son también muy útil.

Número de parte y Número de serie

El número de parte y el número serie son imprimidos sobre sello de código de barra. Puede encontrar este sello de código de barra sobre el paquete exterior, sobre ISA/CPU slot o sobre el lado de componente de PCB. Por ejemplo:

P/N: 91.88110.201 es número de parte, S/N: 91949378KN73 es número de serie.

Nombre de Modelo y versión de BIOS

Nombre de Modelo y versión de BIOS puede ser encontrado sobre izquiedo superior angulo de primero pantalla de iniciar (<u>POST</u> pantalla). Por ejemplo:

AK33 es nombre de modelo de placa madre, R1.20 es versión de BIOS.

AK33

Web: http://www.aopen.com

E-correo: Puede enviarnos e-correo a través de forma de contact abajo:

Inglés http://www.aopen.com.tw/tech/contact/techusa.htm

Japonés http://aojp.aopen.com.tw/tech/contact/techjp.htm

Chino http://w3.aopen.com.tw/tech/contact/techtw.htm

Aleman http://www.aopencom.de/tech/contact/techde.htm

Chino simplificado http://www.aopen.com.cn/tech/contact/techcn.htm

TEL:

Estados Unidos 510-489-8928

Los Paises Bajos +31 73-645-9516

China (86) 755-375-3013

Taiwán (886) 2-2696-1333

Alemania +49 (0) 2102-157-700

