Intel® Desktop Board WL810E Technical Product Specification

March 2000

Order Number A12504-001

Revision History

Revision Revision History		Date
001 Final draft of the WL810E TPS. March		March 2000

This product specification applies only to standard WL810E desktop board with BIOS identifier WL81020A.86A.

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not designed, intended or authorized for use in any medical, life saving, or life sustaining applications or for any other application in which the failure of the Intel product could create a situation where personal injury or death may occur.

Intel retains the right to make changes to specifications and product descriptions at any time, without notice.

The WL810E desktop board may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

Intel Corporation P.O. Box 5937 Denver, CO 80217-9808

or call in North America 1-800-548-4725, Europe 44-0-1793-431-155, France 44-0-1793-421-777, Germany 44-0-1793-421-333, other Countries 708-296-9333.

[†] Third party brands and names are the property of their respective owners.

Copyright © Intel Corporation, 2000.

Preface

This Technical Product Specification (TPS) specifies the board layout, components, connectors, power and environmental requirements, and BIOS for the Intel® WL810E desktop board. It describes the standard desktop board product and available manufacturing options.

Intended Audience

The TPS is intended to provide detailed, technical information about the desktop board and its components to the vendors, system integrators, and other engineers and technicians who need this level of information. It is specifically *not* intended for general audiences.

What This Document Contains

Chapter Description

- 1 A description of the hardware used on this board
- 2 A map of the resources of the board
- 3 The features supported by the BIOS Setup program
- 4 The contents of the BIOS Setup program's menus and submenus
- 5 A description of the BIOS error messages, beep codes, and Power On Self Tests (POST) codes

Typographical Conventions

This section contains information about the conventions used in this specification. Not all of these symbols and abbreviations appear in all specifications of this type.

Notes, Cautions, and Warnings

■ NOTE

Notes call attention to important information.

⚠ CAUTION

Cautions are included to help you avoid damaging hardware or losing data.

A WARNING

Warnings indicate conditions that, if not observed, can cause personal injury.

Other Common Notation

‡	Indicates a feature that is implemented—at least in part—on a riser card.	
#	Used after a signal name to identify an active-low signal (such as USBP0#).	
(NxnX)	When used in the description of a component, N indicates component type, xn are the relative coordinates of its location on the desktop board, and X is the instance of the particular part at that general location. For example, J5J1 is a connector, located at 5J. It is the first connector in the 5J area.	
KB	Kilobyte (1024 bytes).	
Kbit	Kilobit (1024 bits).	
MB	Megabyte (1,048,576 bytes).	
Mbit	Megabit (1,048,576 bits).	
GB	Gigabyte (1,073,741,824 bytes).	
xxh	An address or data value ending with a lowercase h indicates a hexadecimal value.	
x.x V	Volts. Voltages are DC unless otherwise specified.	
†	This symbol is used to indicate third-party brands and names that are the property of their respective owners.	

Contents

1	Des	Ktop B	oard Description	
	1.1	Overvie	eW	12
		1.1.1	Feature Summary	
		1.1.2	Manufacturing Options	13
		1.1.3	Desktop Board Layout	
		1.1.4	Block Diagram	
	1.2		Support	
	1.3		Specifications	
	1.4	_	sor	
	1.5		Memory	
	1.6	,	10E Chipset	
		1.6.1	USB	
		1.6.2	IDE Support	
		1.6.3	Real-Time Clock, CMOS SRAM, and Battery	
	1.7		itroller	
	• • • •	1.7.1	Serial Port	
		1.7.2	Infrared Support	
		1.7.3	Parallel Port	
		1.7.4	Diskette Drive Controller	
		1.7.5	Keyboard and Mouse Interface	
	1.8	Graphic	cs Subsystem	
		1.8.1	Intel® 82810E GMCH	
		1.8.2	Intel 82810E DC-133 GMCH (Optional)	
	1.9	Audio S	Subsystem	
		1.9.1	Crystal Semiconductor CS4299 Stereo Audio Codec	
		1.9.2	Audio Connectors	
	1.10	Hardwa	are Management Features	
		1.10.1	Chassis Intrusion Detect Connector (Optional)	27
	1.11	Power I	Management Features	
		1.11.1	Software Support	28
		1.11.2	Hardware Support	31
2	Tec	hnical	Reference	
	2.1	Introduc	ction	35
	2.2	Memory	y Map	35
	2.3	•	hannels	
	2.4	I/O Map)	36
	2.5		nfiguration Space Map	
	2.6	Interrup	ots	39
	2.7		errupt Routing Map	
	2.8		ctors	
		2.8.1	Back Panel Connectors	42
		2.8.2	Internal I/O Connectors	46

WL810E Desktop Board Technical Product Specification

		2.8.3	External I/O Connectors	53
		2.8.4	Jumper Blocks	56
	2.9	Mechani	ical Considerations	58
		2.9.1	Form Factor	
		2.9.2	I/O Shield	
	2.10		al Considerations	
		2.10.1	Power Consumption	
		2.10.2	Add-in Board Considerations	
		2.10.3	Fan Power Requirements	
	0.44	2.10.4	Power Supply Considerations	
			Considerations	
			ty	
			mental Specifications	
	2.14	2.14.1	ory Compliance	
		2.14.1	Safety Regulations	
		2.14.2	EMC Regulations Certification Markings	
		2.14.3	Certification Markings	00
3	Ove	rview o	of BIOS Features	
	3.1	Introduct	tion	67
	3.2		ash Memory Organization	
	3.3		e Configuration	
		3.3.1	PCI Autoconfiguration	68
		3.3.2	PCI IDE Support	69
	3.4	System I	Management BIOS (SMBIOS)	69
	3.5	BIOS Up	ogrades	
		3.5.1	Language Support	
		3.5.2	Custom Splash Screen	
	3.6		ing BIOS Data	
	3.7	•	tions	
		3.7.1	CD-ROM and Network Boot	
		3.7.2	Booting Without Attached Devices	
	0.0	3.7.3	Default Settings After Battery and Power Failure	
	3.8		gacy Support	
	3.9	BIO2 26	ecurity Features	13
4	BIO	S Setup	o Program	
	4.1	Introduct	tion	75
	4.2	Maintena	ance Menu	76
	4.3		d Configuration Menu	
	4.4		enu	
	4.5	Advance	ed Menu	79
		4.5.1	PCI Configuration Submenu	80
		4.5.2	Boot Setting Configuration Submenu	81
		4.5.3	Peripheral Configuration Submenu	
		4.5.4	IDE Configuration	84
		4.5.5	IDE Configuration Submenus	
		4.5.6	Diskette Configuration Submenu	87

		4.5.7 Event Log Configuration	
		4.5.8 Video Configuration Submenu	
	4.6	Security Menu	
	4.7	Power Menu	
	4.8	Boot Menu	92
	4.9	Exit Menu	93
5	Erre	or Messages and Beep Codes	
	5.1	BIOS Error Messages	
	5.2	Port 80h POST Codes	
	5.3	Bus Initialization Checkpoints	
	5.4	Speaker	
	5.5	BIOS Beep Codes	102
Fi	gure	es	
	1.	microATX Desktop Board Components	
	2.	Board Block Diagram	14
	3.	Intel 810E Chipset Block Diagram	
	4.	Using the Wake on LAN Technology Connector	32
	5.	Back Panel Connectors	42
	6.	Audio Connectors	46
	7.	Peripheral Interface Connectors	
	8.	Hardware Management and Power Connectors	
	9.	PCI Bus Add-In Board Connectors	
	10.	Front Panel Connectors	
	11.	Location of the Jumper Blocks	56
	12.	Board Dimensions	58
	13.	Back Panel I/O Shield Dimensions (microATX Chassis - Independent)	59
	14.	High Temperature Zones	62
	15.	Memory Map of the Flash Memory Device	68
Ta	ables	5	
	1.	Feature Summary	
	2.	Manufacturing Options	
	3.	Compliance with Specifications	
	4.	Processors Supported by the Board	
	5.	Intel 82810E GMCH Refresh Rates	
	6.	Effects of Pressing the Power Switch	
	7.	Power States and Targeted System Power	
	8.	Wake Up Devices and Events	
	9.	System Memory Map	35
	10.	DMA Channels	36
	11.	I/O Map	
	12.	PCI Configuration Space Map	
	13.	Interrupts	39
	14.	PCI Interrupt Routing Map	40
	15.	PS/2 Keyboard/Mouse Connectors	
	16.	USB Connectors	43

WL810E Desktop Board Technical Product Specification

17.	Serial Port A Connector	43
18.	Parallel Port Connector	44
19.	VGA Port Connector	44
20.	MIDI/Game Port Connector	45
21.	Audio Line Out Connector	45
22.	Audio Line In Connector	45
23.	Audio Mic In Connector	45
24.	ATAPI CD-ROM Connector (J2C1)	47
25.	Telephony Connector (J2D2)	
26.	PCI IDE Connectors (J8D1, J8D2)	48
27.	Diskette Drive Connector (J8F2)	48
28.	Fan 1 (Chassis) Connector (J8A3)	50
29.	Wake on LAN Technology Connector (J8A2)	50
30.	Chassis Intrusion Connector (J7B2)	50
31.	Power Connector (J8F1)	50
32.	Fan 3 (Processor) Connector (J3J1)	50
33.	PCI Bus Connectors	52
34.	Serial Port B Connector (J2E1)	54
35.	Front Panel Connector (J8B1)	54
36.	Power LED (Single colored)	55
37.	Power LED (Dual colored)	55
38.	Front Panel Power LED Connector (J8A1)	55
39.	USB Port 0 Front Panel Connector (J7A1)	56
40.	BIOS Setup Configuration Jumper Settings	57
41.	USB Port 0 Configuration Jumper Settings	57
42.	Power Usage	
43.	Fan 3 (Processor Fan) DC Power Requirements	61
44.	Thermal Considerations for Components	63
45.	Environmental Specifications	64
46.	Safety Regulations	65
47.	EMC Regulations	65
48.	Supervisor and User Password Functions	73
49.	Setup Menu Bar	75
50.	Setup Function Keys	76
51.	Extended Configuration Menu	77
52.	Main Menu	78
53.	Advanced Menu	79
54.	PCI Configuration Submenu	80
55.	Boot Setting Configuration Submenu	81
56.	Peripheral Configuration Submenu	82
57.	Peripheral Configuration Submenu (continued)	83
58.	IDE Device Configuration	84
59.	IDE Configuration Submenus	85
60.	Diskette Configuration Submenu	87
61.	Event Log Configuration Submenu	
62.	Video Configuration Submenu	89
63.	Security Menu	90
64	Power Menu	91

Contents

65.	Boot Menu	. 92
	Exit Menu	
	BIOS Error Messages	
	Uncompressed INIT Code Checkpoints	
	Boot Block Recovery Code Checkpoints	
	Runtime Code Uncompressed in F000 Shadow RAM	
	Beep Codes	

WL810E Desktop Board Technical Product Specification

1 Desktop Board Description

What This Chapter Contains

1.1	Overview	12
1.2	Online Support	15
1.3	Design Specifications	15
1.4	Processor	17
1.5	System Memory	18
1.6	Intel® 810E Chipset	19
	I/O Controller	
1.8	Graphics Subsystem	24
1.9	Audio Subsystem	26
1.10	Hardware Management Features	27
	Power Management Features	

1.1 Overview

1.1.1 Feature Summary

The WL810E desktop board's features are summarized below.

Table 1. Feature Summary

Form Factor microATX (9.4 inches by 8.5 inches)	
Processor	Support for
	Intel® Pentium® III processor in a 370-pin FC-PPGA socket with 100/133 MHz host bus frequency
	 Intel[®] Celeron[™] processor in a 370-pin PPGA socket with 66 MHz host bus frequency
Chipset	The Intel® 810E chipset consisting of:
	Intel® 82810E GMCH (Graphics/Memory Controller Hub)
	Intel® 82801AA ICH (I/O Controller Hub)
	Intel® 82802AB FWH (Firmware Hub)
Memory	Two 168-pin dual inline memory module (DIMM) sockets
	Support for up to 512 MB of 100-MHz, non-ECC, unbuffered synchronous DRAM (SDRAM)
	— 32 MB to 256 MB using 16 Mbit/64 Mbit technology
	— 512 MB maximum using 128 Mbit technology
	Support for Serial Presence Detect (SPD) and non-SPD DIMMs
I/O Control	SMSC LPC47M102 low pin count (LPC) interface super I/O controller
Peripheral Interfaces	Two serial ports
	Two USB ports
	One parallel port
	PS/2 [†] keyboard
	PS/2 mouse
Audio Subsystem	Crystal Semiconductor CS4299 analog codec (AC '97)
Graphics Subsystem	Intel 82810E GMCH (integrated in the chipset)
Expansion Capabilities	Four PCI slots
BIOS	Intel [®] /AMI [†] BIOS
	Intel 82802AB Firmware Hub (FWH) 4 Mbit flash memory
	Support for SMBIOS, Advanced Configuration and Power Management Interface (ACPI), Advanced Power Management (APM), and Plug and Play (see Section 1.3 for specification compliance levels)
Other Features	Wake on LAN [†] technology
	Speaker
	I .

1.1.2 Manufacturing Options

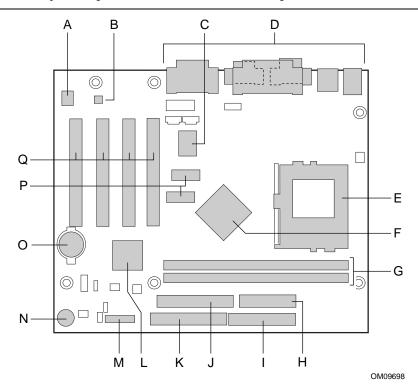

The table below describes the WL810E desktop board's manufacturing options. Not all of the following manufacturing options are available in all marketing channels. Please contact your Intel representative to determine what manufacturing options are available to you.

Table 2. Manufacturing Options

Graphics Subsystem	Intel 82810E DC-133 GMCH with support for 1 M x 32 (4 MB) 133 MHz display cache
Instantly Available Technology	Suspend to RAM (STR)

1.1.3 Desktop Board Layout

Figure 1 shows the major components of the WL810E desktop board.

- A Intel 82802AB Firmware Hub (FWH)
- B Crystal Semiconductor CS4299 analog codec
- C SMSC LPC47M102 super I/O controller
- D Back panel connectors
- E 370-pin PPGA processor socket
- F Intel 82810E Graphics Memory Controller Hub (GMCH)
- G DIMM sockets
- H Power supply connector
- I Diskette drive connector

- J Secondary IDE connector
- K Primary IDE connector
- L Intel 82801AA I/O Controller Hub (ICH)
- M Front panel connector
- N Speaker
- O Battery
- P Display cache
- Q PCI bus add-in boards

Figure 1. microATX Desktop Board Components

1.1.4 Block Diagram

Figure 2 is a block diagram showing the relationship among the major components.

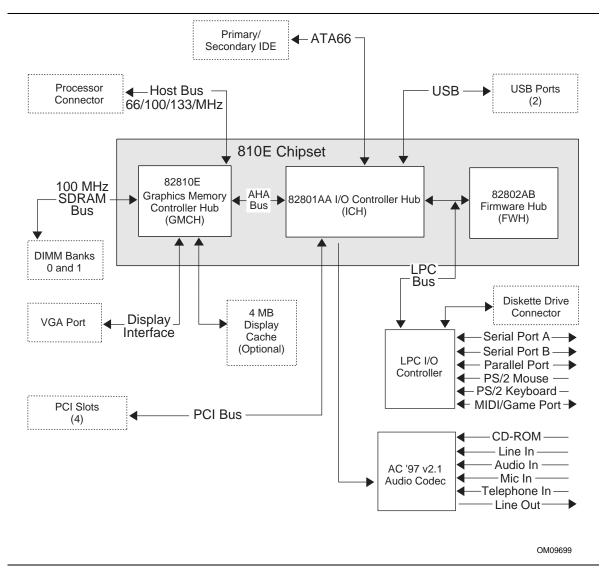


Figure 2. Board Block Diagram

1.2 Online Support

Find information about Intel boards under "Product Info" at the World Wide Web site:

http://www.intel.com/design/motherbd

Find "Processor Data Sheets" or information about "Proper Date Access in Systems with Intel Motherboards" at these World Wide Web sites:

http://www.intel.com/design/litcentr http://support.intel.com/support/year2000

Find information about the ICH addressing at this World Wide Web site: http://developer.intel.com/design/chipsets/datashts/

1.3 Design Specifications

Table 3 lists the specifications applicable to the WL810E board.

Table 3. Compliance with Specifications

Specification	Description	Revision Level
AC '97	Audio Codec '97 Component Specification	Revision 2.1, May 22, 1998, Intel Corporation. This specification is available at: http://developer.intel.com/pc-supp/platform/ac97/
ACPI	Advanced Configuration and Power Interface specification	Revision 1.0a, July 1, 1998, Intel Corporation, Microsoft Corporation, and Toshiba Corporation. The specification is available at: http://www.teleport.com/~acpi/
AGP	Accelerated Graphics Port Interface Specification (1X and 2X)	Revision 2.0, May 4, 1998, Intel Corporation. The specification is available through the Accelerated Graphics Port Implementers Forum at: http://www.agpforum.org/
AMI BIOS	American Megatrends BIOS Specification	AMIBIOS 98. This specification is available at: http://www.amibios.com
APM	Advanced Power Management BIOS Interface Specification	Revision 1.2, February, 1996, Intel Corporation and Microsoft Corporation. This specification is available at: http://www.microsoft.com/hwdev/busbios/amp_12.htm
ATA-3	Information Technology - AT Attachment-3 Interface	X3T10/2008D Revision 6. The specification is available at the ATA Anonymous FTP Site: fission.dt.wdc.com.
ATAPI	ATA Packet Interface for CD-ROMs	SFF-8020i Revision 2.5. The specification is available at: (SFF) Fax at: (408) 741-1600.
ATX	ATX Form Factor Specification	Revision 2.03, December 1998, Intel Corporation. The specification is available at: http://developer.intel.com/design/motherbd/atx.htm

continued

 Table 3.
 Compliance with Specifications (continued)

Specification	Description	Revision Level
DDC2B	Display Data Channel Standard	Version 3.0, Level 2B protocols, Video Electronics Standards Association (VESA). The specification is available at: http://www.vesa.org
El Torito	Bootable CD-ROM Format Specification	Version 1.0, January 25, 1995, Phoenix Technologies Ltd. and IBM Corporation. The specification is available at: http://www.phoenix.com/products/specs.html
EPP	Enhanced Parallel Port	IEEE 1284 standard, Mode [1 or 2], v1.7, v1.9
IrDA [†]	Serial Infrared Physical Layer Link specification	Version 1.1, October 17, 1995 Infrared Data Association. The specification is available at: Phone: (510) 943-6546 Fax: (510) 943-5600 E-mail: irda@netcom.com
microATX	microATX Desktop Board Interface Specification	Version 1.0, December 1997, Intel Corporation. The specification is available at: http://www.teleport.com/~microatx/spec/
LPC	Low Pin Count Interface Specification	Revision 1.0, September 29, 1997, Intel Corporation. This specification is available at: http://www.intel.com/design/chipsets/industry/lpc.htm
PCI	PCI Local Bus Specification PCI Power Management Interface Specification	Revision 2.2, December 18, 1998, PCI Special Interest Group. Revision 1.1, December 18, 1998, PCI Special Interest Group. These specifications can be ordered at: http://www.pcisig.com/
Plug and Play	Plug and Play BIOS Specification	Version 1.0a, May 5, 1994, Compaq Computer Corporation, Phoenix Technologies Ltd., and Intel Corporation. The specification is available at: http://irving.co.intel.com/ntcdarchive/docs/wcd00006/wcd00 615.htm
SDRAM DIMMs (64- and 72-bit)	PC SDRAM Unbuffered DIMM Specification PC SDRAM DIMM Specification PC Serial Presence Detect (SPD) Specification	Revision 1.0, February 1998, Intel Corporation. Revision 1.63, October 1998, Intel Corporation. Revision 1.2A, December 1997, Intel Corporation. These specifications are available at: http://developer.intel.com/design/chipsets/memory/
SMBIOS	System Management BIOS Reference Specification	Version 2.3, August 12, 1998, American Megatrends Inc., Award Software International Inc., Compaq Computer Corporation, Dell Computer Corporation, Hewlett-Packard Company, Intel Corporation, Phoenix Technologies Ltd., and SystemSoft Corporation. The specification is available at: http://developer.intel.com/ial/WfM/design/smbios/
UHCI	Universal Host Controller Interface (UHCI) Design Guide	Revision 1.1, March 1996, Intel Corporation. This specification is available at: http://www.usb.org/developers/

continued

Table 3. Compliance with Specifications (continued)

Specification	Description	Revision Level
USB	Universal Serial Bus Specification	Revision 1.1, September 23, 1998, Compaq Computer Corporation, Digital Equipment Corporation, IBM PC Company, Intel Corporation, Microsoft Corporation, NEC, and Northern Telecom. This specification is available at: http://www.usb.org/developers/
WfM	Wired for Management Baseline Specification	Version 2.0, December 18, 1998, Intel Corporation. This specification is available at: http://developer.intel.com/ial/wfm/wfmspecs.htm

1.4 Processor

The WL810E board supports a single Pentium III processor with 100/133 MHz host bus frequency, or a single Celeron processor with 66 MHz host bus frequency. The processor's VID pins automatically program the voltage regulator on the board to the required processor voltage. The host bus speed for any of the processors is automatically selected. The processor connects to the desktop board through the 370-pin FC-PPGA package or PPGA socket.

The desktop board supports the processors listed in Table 4.

Table 4. Processors Supported by the Board

	Processor	Host Bus	
Processor	Frequency (MHz)	Frequency (MHz)	Cache Size (KB)
Pentium III processor	500E	100	256
	533EB	133	256
	550E	100	256
	600E	100	256
	600EB	133	256
	650	100	256
	667	133	256
	700	100	256
	733	133	256
	750	100	256
	800E	100	256
	800EB	133	256
Celeron processor	333	66	128
	366	66	128
	400	66	128
	433	66	128
	466	66	128
	500	66	128
	533	66	128
	500A	66	128
	533A	66	128

All supported onboard memory can be cached, up to the cachability limit of the processor.

For information about	Refer to
Processor support for the WL810E board	Section 1.2, page 15
Processor data sheets	Section 1.2, page 15

1.5 System Memory

A CAUTION

To be fully compliant with all applicable Intel® SDRAM memory specifications, the board should be populated with DIMMs that support the Serial Presence Detect (SPD) data structure. If your memory module does not support SPD, you will see a notification to this effect on the screen at power-up. The BIOS will attempt to configure the memory controller for normal operation; however, DIMMs may not function at the determined frequency.

CAUTION

Because the main system memory is also used as video memory, the WL810E board requires 100 MHz SDRAM DIMMs. It is highly recommended that SPD DIMMs be used, since this allows the BIOS to read the SPD data and program the chipset to accurately configure memory settings for optimum performance. If non-SPD memory is installed, the BIOS will attempt to correctly configure the memory settings, but performance and reliability may be impacted.

The board has two 3.3 V, 168 pin DIMM sockets. SDRAM can be installed in one or both sockets. Recommended minimum memory size is 32 MB; maximum memory size is 512 MB. The BIOS automatically detects memory type, size, and speed. Due to the video requirements of the WL810E board, minimum memory for the Windows NT[†] 4.0 operating system is 64 MB.

The desktop board supports memory with the following features:

- 168-pin DIMMs with gold-plated contacts
- 100 MHz unbuffered SDRAM only
- Non-ECC (64-bit) memory
- Serial Presence Detect (SPD) or non-SPD memory
- 3.3 V memory only

The board supports single- or double-sided DIMMs in the following sizes:

DIMM Size	Non-ECC Configuration
16 MB	2 Mbit x 64
32 MB	4 Mbit x 64
64 MB	8 Mbit x 64
128 MB	16 Mbit x 64
256 MB	32 Mbit x 64

NOTE

All memory components and DIMMs used with the WL810E desktop board must comply with the PC SDRAM Unbuffered DIMM Specification. You can access this document through the Internet at:

http://www.intel.com/design/chipsets/memory/index.htm

1.6 Intel® 810E Chipset

The Intel 810E chipset consists of the following devices:

- Graphics/Memory Controller Hub (GMCH) with Accelerated Hub Architecture (AHA) bus
- I/O Controller Hub with AHA bus
- Firmware Hub

The chipset provides the host, memory, graphics, and I/O interfaces shown in Figure 3.

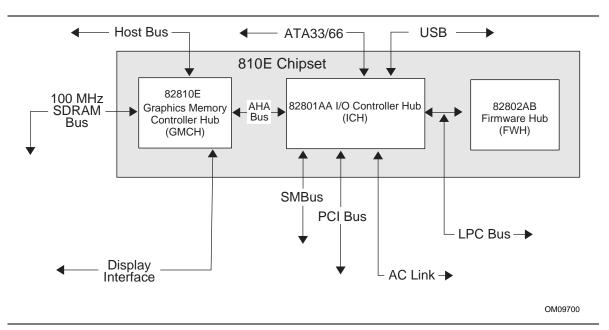


Figure 3. Intel 810E Chipset Block Diagram

For information about	Refer to
The Intel 810E chipset	http://developer.intel.com
The resources used by the chipset	Chapter 2
The chipset's compliance with ACPI, APM, and AC '97	Section 1.3, page 15

1.6.1 USB

The board has two USB ports; one USB peripheral can be connected to each port. For more than two USB devices, an external hub can be connected to either port. The two USB ports are implemented with stacked back panel connectors. The board fully supports UHCI and uses UHCI-compatible software drivers.

USB features include:

- Self-identifying peripherals that can be plugged in while the computer is running
- Automatic mapping of function to driver and configuration
- Support for isochronous and asynchronous transfer types over the same set of wires
- Support for up to 127 physical devices
- Guaranteed bandwidth and low latencies appropriate for telephony, audio, and other applications
- Error-handling and fault-recovery mechanisms built into the protocol

⇒ NOTE

Computer systems that have an unshielded cable attached to a USB port may not meet FCC Class B requirements, even if no device or a low-speed USB device is attached to the cable. Use shielded cable that meets the requirements for full-speed devices.

For information about	Refer to
The location of the USB connectors on the back panel	Figure 5, page 42
The signal names of the USB connectors	Table 16, page 43
The USB specification and UHCI	Section 1.3, page 15
Routing USB to the front panel	Section 2.8.4.2, page 57

1.6.2 IDE Support

The desktop board has two independent bus-mastering IDE interfaces. These interfaces support:

- ATAPI devices (such as CD-ROM drives)
- Ultra ATA/33 and Ultra ATA/66 devices

The BIOS supports logical block addressing (LBA) and extended cylinder head sector (ECHS) translation modes. The drive reports the transfer rate and translation mode to the BIOS.

The desktop board supports laser servo (LS-120) diskette technology through its IDE interfaces. The LS-120 drive can be configured as a boot device by setting the BIOS Setup program's Boot menu to one of the following:

- ARMD-FDD (ATAPI Removable Media Device Floppy Disk Drive)
- ARMD-HDD (ATAPI Removable Media Device Hard Disk Drive)

For information about	Refer to
The location of the IDE connectors	Figure 7, page 47
The signal names of the IDE connectors	Table 26, page 48
BIOS Setup program's Boot menu	Table 64, page 92

1.6.3 Real-Time Clock, CMOS SRAM, and Battery

The real-time clock is compatible with DS1287 and MC146818 components. The clock provides a time-of-day clock and a multicentury calendar with alarm features. The real-time clock supports 256 bytes of battery-backed CMOS SRAM in two banks that are reserved for BIOS use.

The time, date, and CMOS values can be specified in the Setup program. The CMOS values can be returned to their defaults by using the Setup program.

■ NOTE

The recommended method of accessing the date in systems with Intel® desktop boards is from the Real-Time Clock (RTC) via the BIOS. The BIOS on Intel desktop boards contains a century checking and maintenance feature that checks the least two significant digits of the year stored in the RTC during each BIOS request (INT 1Ah). During this check, the BIOS reads the date and, if less than 80 (i.e., 1980 is the first year supported by the PC), updates the century byte to 20. This feature enables operating systems and applications using the BIOS date/time services to reliably manipulate the year as a four-digit value.

A coin-cell battery powers the real-time clock and CMOS memory. When the computer is not plugged into a wall socket, the battery has an estimated life of about three years. When the computer is plugged in, the 3.3 V standby current extends the life of the battery. The clock is accurate to \pm 13 minutes/year at 25 °C with 3.3 V applied.

For information about	Refer to
Proper date access in systems with Intel desktop boards	Section 1.2, page 15

1.7 I/O Controller

The SMSC LPC47M102 super I/O controller provides the following features:

- Low pin count (LPC) interface
- Two serial ports
- Infrared port (IrDA[†] 1.1 compliant)
- One parallel port with Extended Capabilities Port (ECP) and Enhanced Parallel Port (EPP) support
- PS/2–style mouse and keyboard interfaces
- Interface for one 1.2 MB, 1.44 MB, or 2.88 MB diskette drive
- Intelligent power management, including a programmable wake up event interface
- MIDI/Game port

The BIOS Setup program provides configuration options for the I/O controller.

For information about	Refer to
SMSC LPC47M102 I/O controller	http://www.smsc.com

1.7.1 Serial Port

The board has one 9-pin D-Sub serial port connector located on the back panel and an optional connector on the board for a second serial port. The serial ports' NS16C550-compatible UARTs support data transfers at speeds up to 115.2 kbits/sec with BIOS support. The serial ports can be assigned as COM1 (3F8h), COM2 (2F8h), COM3 (3E8h), or COM4 (2E8h).

For information about	Refer to
The location of the serial port A connector	Figure 5, page 42
The signal names of the serial port A connector	Table 17, page 43
The location of the serial port B connector	Figure 10, page 53
The signal names of the serial port B connector	Table 34, page 54

1.7.2 Infrared Support

On the front panel connector, there are four pins that support Hewlett Packard HSDL-1000 compatible infrared (IR) transmitters and receivers. In the BIOS Setup program, Serial Port B can be directed to a connected IR device. (In this case, the Serial Port B connector cannot be used.) The IR connection can be used to transfer files to or from portable devices like laptops, PDAs, and printers. The Infrared Data Association (IrDA) specification supports data transfers of 115 kbits/sec at a distance of 1 meter.

For information about	Refer to
The infrared port connector	Table 35, page 54
Configuring serial port B for infrared applications	Section 2.8.3.1, page 54
The IrDA specification	Section 1.3, page 15

1.7.3 Parallel Port

The connector for the multimode bidirectional parallel port is a 25-pin D-Sub connector located on the back panel of the board. In the Setup program, there are four options for parallel port operation:

- Output Only
- Bidirectional (PS/2 compatible)
- EPP
- ECP

For information about	Refer to
The location of the parallel port connector	Figure 5, page 42
The signal names of the parallel port connector	Table 18, page 44

1.7.4 Diskette Drive Controller

The I/O controller supports a single diskette drive that is compatible with the 82077 diskette drive controller and supports both PC-AT[†] or PS/2 modes.

■ NOTE

The I/O controller supports 1.2 MB, 3.5-inch diskette drives, but a special driver is required for this type of drive.

For information about	Refer to
The location of the diskette drive connector	Figure 7, page 47
The signal names of the diskette drive connector	Table 27, page 48
The supported diskette drive capacities and sizes	Section 4.5.6, page 87

1.7.5 Keyboard and Mouse Interface

PS/2 keyboard and mouse connectors are located on the back panel of the board. The +5 V lines to these connectors are protected with a PolySwitch[†] circuit that, like a self-healing fuse, reestablishes the connection after an overcurrent condition is removed.

⇒ NOTE

Power to the computer should be turned off before a keyboard or mouse is connected or disconnected.

The keyboard controller contains code that provides the traditional keyboard and mouse control functions and also supports Power On/Reset password protection. A Power On/Reset password can be specified in the BIOS Setup program.

For information about	Refer to
The location of the keyboard and mouse connectors	Figure 5, page 42
The signal names of the keyboard and mouse connectors	Table 15, page 43

1.8 Graphics Subsystem

The graphics subsystem features the Intel 82810E Graphics/Memory Controller Hub (GMCH).

1.8.1 Intel® 82810E GMCH

The Intel 82810E GMCH features the following:

- Integrated graphics controller
 - 3-D hyper pipelined architecture
 - Full 2-D hardware acceleration
 - Motion video acceleration
- 3-D graphics visual and texturing enhancements
- Display
 - Integrated 24-bit 230 MHz RAMDAC
 - Display Data Channel Standard, Version 3.0, Level 2B protocols compliant (see Section 1.3 for specification information)
- Video
 - Hardware motion compensation for software MPEG2 decode
 - Software DVD at 30 fps
- Integrated graphics memory controller

For information about	Refer to
The GMCH	Section 1.2, page 15

Table 5 lists the refresh rates supported by the WL810E board.

Table 5. Intel 82810E GMCH Refresh Rates

Resolution	Colors	60 Hz	70 Hz	72 Hz	75 Hz	85 Hz
640x200	16		х			
640x350	16		х			
640x400	256	Х	х		х	х
	64 K	Х	х		х	х
	16 M		х			
640x480	16	х		х	х	х
	256	х	х	х	х	х
	32 K	х			х	х
	64 K	Х	х	х	Х	х
	16 M	Х	х	х	х	х
800x600	256	х	х	Х	х	х
	32 K	Х			Х	х
	64 K	х	х	Х	х	х
	16 M	х	х	х	х	х
024x768	256	х	х		х	х
	32 K	х			х	х
	64 K	х	х	х	х	х
	16 M	х	х	х	х	х
056x800	16		х			
280x1024	256	х	х	х	х	х
	32 K	х			х	
	64 K	х	х	х	х	х
	16 M	х	х	х	х	х
600x900	256	х			х	х
	32 K	х			х	х
	64 K	х			х	х
	16 M	х			х	х
600x1200	256	х	х	х	х	х
	32 K	х	х	х	х	х
	64 K	х	х	х	х	х
	16 M	x	Х	х	х	х

⇒ NOTE

Some of the system memory is reserved for video.

1.8.2 Intel 82810E DC-133 GMCH (Optional)

In addition to all the features of the Intel 82810E GMCH, the Intel 82810E DC-133 GMCH manufacturing option also includes 4 MB of display cache.

See Intel's World Wide Web site for information about graphics drivers:

http://support.intel.com/support/motherboards/desktop/

1.9 Audio Subsystem

The Audio Codec '97 (AC '97) compatible audio subsystem includes these features:

- Split digital/analog architecture for improved signal-to-noise ratio (≥ 85 dB) measured at line out, from any analog input, including line in and CD-ROM
- 3-D stereo enhancement
- Power management support for APM 1.2 and ACPI 1.0

The audio subsystem consists of:

- Crystal Semiconductor CS4299 stereo audio codec
- Audio connectors

For information about	Refer to
Obtaining audio software and utilities	Section 1.2, page 15

1.9.1 Crystal Semiconductor CS4299 Stereo Audio Codec

The Crystal Semiconductor CS4299 features

- A high performance 18-bit stereo full-duplex audio codec
- Up to 48 kHz sampling rate

1.9.2 Audio Connectors

The audio connectors include the following:

- ATAPI-style connectors
 - CD-ROM
 - Telephony
- Back panel connectors
 - Line out
 - Line in
 - Mic in
 - MIDI/Game Port

⇒ NOTE

The line out connector, located on the back panel, is designed to power either headphones or amplified speakers only. Poor audio quality may occur if passive (non-amplified) speakers are connected to this output.

For information about	Refer to
The back panel audio connectors	Section 2.8.1, page 42

1.9.2.1 ATAPI CD-ROM Audio Connector

A black 1 x 4-pin ATAPI connector connects an internal CD-ROM drive to the audio mixer.

For information about	Refer to
The location of the ATAPI CD-ROM audio connector	Figure 6, page 46
The signal names of the ATAPI CD-ROM audio connector	Table 24, page 47

1.9.2.2 Telephony Connector

A green 1 x 4-pin ATAPI-style connector connects the monaural audio signals of an internal telephony device to the audio subsystem. A monaural audio-in and audio-out signal interface is necessary for telephony applications such as speakerphones, fax/modems, and answering machines.

For information about	Refer to
The location of the telephony connector	Figure 6, page 46
The signal names of the telephony connector	Table 25, page 47

1.10 Hardware Management Features

The hardware management features enable the board to be compatible with the Wired for Management (WfM) specification. The board has the optional chassis intrusion detect connector.

1.10.1 Chassis Intrusion Detect Connector (Optional)

The board supports a chassis security feature that detects if the chassis cover is removed and sounds an alarm (through the onboard speaker or PC chassis speaker, if either is present). For the chassis intrusion circuit to function, the chassis' power supply must be connected to AC power. The security feature uses a mechanical switch on the chassis that attaches to the chassis intrusion detect connector. The mechanical switch is closed for normal computer operation.

For information about	Refer to
The location of the chassis intrusion detect connector	Figure 8, page 49
The signal names of the chassis intrusion detect connector	Table 30, page 50

1.11 Power Management Features

Power management is implemented at several levels, including:

- Software support:
 - Advanced Power Management (APM)
 - Advanced Configuration and Power Interface (ACPI)
- Hardware support:
 - Wake on LAN technology
 - Instantly Available technology
 - Wake on Ring
 - Resume on Ring
 - Fan connectors

1.11.1 Software Support

The software support for power management includes:

- APM 1.2
- ACPI 1.0

If the board is used with an ACPI-aware operating system, the BIOS can provide ACPI support. Otherwise, it defaults to APM support.

1.11.1.1 APM

APM makes it possible for the computer to enter an energy saving standby mode. The standby mode can be initiated in the following ways:

- Time-out period specified in the BIOS Setup program
- Suspend/resume switch connected to the front panel sleep connector
- From the operating system, such as the Suspend menu item in Windows[†] 98

In standby mode, the desktop board can reduce power consumption by spinning down hard drives, and reducing power to or turning off VESA[†] DPMS-compliant monitors. Power-management mode can be enabled or disabled in the BIOS Setup program.

While in standby mode, the system retains the ability to respond to external interrupts and service requests, such as incoming faxes or network messages. Any keyboard or mouse activity brings the system out of standby mode and immediately restores power to the monitor.

The BIOS enables APM by default; but the operating system must support an APM driver for the power-management features to work. For example, Windows 98 supports the power-management features upon detecting that APM is enabled in the BIOS.

For information about	Refer to
Enabling or disabling power management in the BIOS Setup program	Section 4.7, page 91
The board's compliance level with APM	Table 3, page 15

1.11.1.2 ACPI

ACPI gives the operating system direct control over the power management and Plug and Play functions of a computer. The use of ACPI with this board requires the support of an operating system that provides full ACPI functionality. ACPI features include:

- Plug and Play (including bus and device enumeration) and APM functionality normally contained in the BIOS.
- Power management control of individual devices, add-in boards (some add-in boards may require an ACPI-aware driver), video displays, and hard disk drives.
- Methods for achieving less than 30-watt system operation in the Power On Suspend sleeping state, and less than 5-watt system operation in the Suspend to Disk sleeping state.
- A Soft-off feature that enables the operating system to power off the computer.
- Support for multiple wake up events (see Table 8 on page 31).
- Support for a front panel power and sleep mode switch. Table 6 lists the system states based
 on how long the power switch is pressed, depending on how ACPI is configured with an
 ACPI-aware operating system.

Table 6. Effects of Pressing the Power Switch

If the s	ystem is in this state	and the power switch is pressed for	the system enters this state
Off	(ACPI G2/S5 state)	Less than five seconds	Power on
On	(ACPI G0 state)	Less than five seconds	Soft off/Suspend
On	(ACPI G0 state)	More than five seconds	Fail safe power off
Sleep	(ACPI G1 state)	Less than five seconds	Wake up
Sleep	(ACPI G1 state)	More than five seconds	Power off

■ NOTE

The Wake on LAN technology connector at location J8A2 is provided to support wake up from a LAN adapter in APM mode. Wake on LAN technology in ACPI mode is supported via the PME# signal on the PCI connector.

For information about	Refer to
The board's compliance level with ACPI	Section 1.3, page 15

1.11.1.2.1 System States and Power States

Under ACPI, the operating system directs all system and device power state transitions. The operating system puts devices in and out of low-power states based on user preferences and knowledge of how devices are being used by applications. Devices that are not being used can be turned off. The operating system uses information from applications and user settings to put the system as a whole into a low-power state.

Table 7 lists the power states supported by the desktop board along with the associated system power targets. See the ACPI specification for a complete description of the various system and power states.

Table 7. Power States and Targeted System Power

Global States	Sleeping States	CPU States	Device States	Targeted System Power*
G0 – working state	S0 – working	C0 – working	D0 – working state	Full power > 30 W
G1 – sleeping state	S1 – CPU stopped	C1 – stop grant	D1, D2, D3- device specification specific	5 W < power < 30 W
G1 – sleeping state	S3 – Suspend-to- RAM. Context saved to RAM.	No power	D3 – no power except for wake up logic	Power < 5 W **
G2/S5	S5 – Soft off. Context not saved. Cold boot is required.	No power	D3 – no power except for wake up logic	Power < 5 W **
G3 – mechanical off. AC power is disconnected from the computer.	No power to the system.	No power	D3 – no power for wake up logic, except when provided by battery or external source.	No power to the system so that service can be performed.

^{*} Total system power is dependent on the system configuration, including add-in boards and peripherals powered by the system chassis' power supply.

^{**} Dependent on the standby power consumption of wake-up devices used in the system.

1.11.1.2.2 **Wake Up Devices and Events**

Table 8 lists the devices or specific events that can wake the computer from specific states. Sleep state S5 is the same for the wake up event.

Table 8. **Wake Up Devices and Events**

These devices/events can wake up the computer	from this state
Power switch	S1, S3, S5
RTC alarm	S1, S3, S5
Modem	S1, S3
IR command	S1
USB	S1
PS/2 keyboard	S1
PS/2 mouse	S1
Sleep button	S1
PME	S1, S3
Wake on LAN	S1, S3

1.11.1.2.3 **Plug and Play**

In addition to power management, ACPI provides controls and information so that the operating system can facilitate Plug and Play device enumeration and configuration. ACPI is used only to enumerate and configure desktop board devices that do not have other hardware standards for enumeration and configuration. PCI devices on the motherboard, for example, are not enumerated by ACPI.

1.11.2 **Hardware Support**

The board provides several hardware features that support power management, including:

- Wake on LAN technology
- Instantly Available technology
- Wake on Ring
- Resume on Ring
- Fan connectors

Wake on LAN technology and Instantly Available technology require power from the +5 V standby line. The sections discussing these features describe the incremental standby power requirements for each.

A CAUTION

If Wake on LAN and Instantly Available technology features are used, ensure that the power supply provides adequate +5 V standby current. Failure to do so can damage the power supply. The total amount of standby current required depends on the wake devices supported and manufacturing options.

1.11.2.1 Wake on LAN Technology

A CAUTION

For Wake on LAN technology, the 5-V standby line for the power supply must be capable of providing adequate +5 V standby current. Failure to provide adequate standby current when implementing Wake on LAN technology can damage the power supply.

Wake on LAN technology enables remote wakeup of the computer through a network. The LAN subsystem, as a PCI bus network adapter, monitors network traffic at the Media Independent Interface. Upon detecting a Magic Packet[†] frame, the LAN subsystem asserts a wakeup signal that powers up the computer. Depending on the LAN implementation, the board supports Wake on LAN technology in one of two ways:

- Through the Wake on LAN technology connector
- Through the PCI bus PME# signal (for PCI 2.2 compliant LAN designs)

The Wake on LAN technology connector can be used with PCI bus network adapters that have a remote wake up connector, as shown in Figure 4. Network adapters that are PCI 2.2 compliant assert the wakeup signal through the PCI bus signal PME# (pin A19 on the PCI bus connectors).

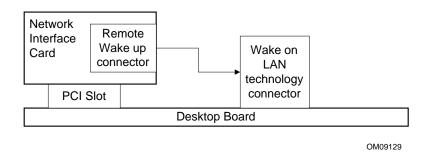


Figure 4. Using the Wake on LAN Technology Connector

For information about	Refer to
The location of Wake on LAN technology connector	Figure 8, page 49
The signal names of the Wake on LAN technology connector	Table 29, page 50

1.11.2.2 **Instantly Available Technology**

! CAUTION

For Instantly Available technology, the power supply must be capable of providing the +5 V standby current that those boards require in addition to the standby current required by the board. Failure to provide adequate standby current when using this feature can damage the power supply.

Instantly Available technology (supported with ICH) enables the board to enter the ACPI S3 (Suspend-to-RAM) sleep state. While in the S3 sleep state, the computer will appear to be off. When signaled by a wake up device or event, the system quickly returns to its last known wake state. Table 8 on page 31 lists the devices and events that can wake the computer from the S3 state.

The board supports the *PCI Bus Power Management Interface Specification*, *Rev 1.1*. Add-in boards that also support this specification can participate in power management and can be used to wake the computer.

1.11.2.3 Wake on Ring

The operation of Wake on Ring can be summarized as follows:

- Powers up the computer from either the APM soft-off mode or the ACPI S3 state
- Requires two rings to access the computer:
 - First ring powers up the computer
 - Second ring enables access (when the appropriate software is loaded)
- Detects incoming call differently for external as opposed to internal modems:
 - For external modems, board hardware monitors the ring indicate (RI) input of serial port A (serial port B does not support this feature)

■ NOTE

The modem must support PCI 2.2 and the driver must support ACPI.

For information about	Refer to
The PCI specification	Section 1.3, page 15

1.11.2.4 Resume on Ring

The operation of Resume on Ring can be summarized as follows:

- Resumes operation from either the APM sleep mode or the ACPI S1 state
- Requires only one call to access the computer
- Detects incoming call similarly for external and internal modems
- Requires modem interrupt be unmasked for correct operation

⇒ NOTE

The use of Resume on Ring technology from an ACPI state requires the support of an operating system that provides full ACPI functionality.

1.11.2.5 Fan Connectors

The board has two fan connectors. The fan 3 (processor) and fan 1 (chassis) connectors provide $+12\ V\ DC$ for a processor fan or active fan heatsink.

For information about	Refer to
The location of the fan connectors	Figure 8, page 49
The signal names of the fan connectors	Section 2.8.2.3, page 49

2 Technical Reference

What This Chapter Contains

2.1	Introduction	. 35
2.2	Memory Map	35
2.3	DMA Channels	36
2.4	I/O Map	36
2.5	PCI Configuration Space Map	38
2.6	Interrupts	
	PCI Interrupt Routing Map	
2.8	Connectors	41
2.9	Mechanical Considerations	58
2.10	Electrical Considerations	60
2.11	Thermal Considerations	62
2.12	Reliability	63
2.13	Environmental Specifications	64
2.14	Regulatory Compliance	65

2.1 Introduction

Sections 2.2-2.6 contain several standalone tables. Table 9 describes the system memory map, Table 10 lists the DMA channels, Table 11 shows the I/O map, Table 12 defines the PCI configuration space map, and Table 13 describes the interrupts. The remaining sections in this chapter are introduced by text found with their respective section headings.

2.2 Memory Map

Table 9. System Memory Map

Address Range (decimal)	Address Range (hex)	Size	Description
1024 K - 524288 K	100000 - 1FFFFFF	511 MB	Extended memory
960 K - 1024 K	F0000 - FFFFF	64 KB	Runtime BIOS
896 K - 960 K	E0000 - EFFFF	64 KB	Reserved
800 K - 896 K	C8000 - DFFFF	96 KB	Available high DOS memory (open to PCI bus)
640 K - 800 K	A0000 - C7FFF	160 KB	Video memory and BIOS
639 K - 640 K	9FC00 - 9FFFF	1 KB	Extended BIOS data (movable by memory manager software)
512 K - 639 K	80000 - 9FBFF	127 KB	Extended conventional memory
0 K - 512 K	00000 - 7FFFF	512 KB	Conventional memory

2.3 DMA Channels

Table 10. DMA Channels

DMA Channel Number	Data Width	System Resource
0	8- or 16-bits	Audio
1	8- or 16-bits	Audio / parallel port
2	8- or 16-bits	Diskette drive
3	8- or 16-bits	Parallel port (for ECP or EPP) / audio
4		DMA controller
5	16-bits	Open
6	16-bits	Open
7	16-bits	Open

2.4 I/O Map

Table 11. I/O Map

Address (hex)	Size	Description
0000 - 000F	16 bytes	DMA controller
0020 - 0021	2 bytes	Programmable Interrupt Control (PIC1)
0040 - 0043	4 bytes	Programmable Interrupt Timer (PIT)
0060	1 byte	Keyboard controller byte—reset IRQ
0061	1 byte	System speaker
0064	1 byte	Keyboard controller, CMD/STAT byte
0070 - 0071	2 bytes	System CMOS/Real Time Clock
0072 - 0073	2 bytes	System CMOS
0080 - 008F	16 bytes	DMA controller
0092	1 byte	Fast A20 and PIC
00A0 - 00A1	2 bytes	PIC2
00B2 - 00B3	2 bytes	APM control
00C0 - 00DF	32 bytes	DMA
00F0	1 byte	Numeric data processor
0170 - 0177	8 bytes	Secondary IDE channel
01F0 - 01F7	8 bytes	Primary IDE channel
One of these ranges: 0200 - 0207 0208 - 020F	Can vary from 1 byte to 8 bytes	Audio/game port
One of these ranges:		Audio (Sound Blaster Pro [†] -compatible)
0220 - 0233	20 bytes	
0240 - 0253	20 bytes	
0260 - 0273	20 bytes	
0280 - 0293	20 bytes	
0228 - 022F*	8 bytes	LPT3
0278 - 027F*	8 bytes	LPT2
02E8 - 02EF*	8 bytes	COM4/video (8514A)

continued

Table 11. I/O Map (continued)

Address (hex)	Size	Description
02F8 - 02FF*	8 bytes	COM2
One of these ranges: 0300 - 0301 0330 - 0331	2 bytes	MPU-401 (MIDI)
0376	1 byte	Secondary IDE channel command port
0377, bits 6:0	7 bits	Secondary IDE channel status port
0378 - 037F	8 bytes	LPT1
0388 - 038B	6 bytes	AdLib [†] (FM synthesizer)
03B0 - 03BB	12 bytes	Intel 82810E - DC133 Graphics/Memory Controller Hub (GMCH)
03C0 - 03DF	32 bytes	Intel 82810E Graphics/Memory Controller Hub (GMCH)
03E8 - 03EF	8 bytes	COM3
03F0 - 03F5	6 bytes	Diskette channel 1
03F6	1 byte	Primary IDE channel command port
03F8 - 03FF	8 bytes	COM1
04D0 - 04D1	2 bytes	Edge/level triggered PIC
One of these ranges: 0530 - 0537 0604 - 060B 0E80 - 0E87 0F40 - 0F47	8 bytes	Windows Sound System
LPTn + 400h	8 bytes	ECP port, LPTn base address + 400h
0CF8 - 0CFB**	4 bytes	PCI configuration address register
0CF9***	1 byte	Turbo and reset control register
0CFC - 0CFF	4 bytes	PCI configuration data register
FFA0 - FFA7	8 bytes	Primary bus master IDE registers
FFA8 - FFAF	8 bytes	Secondary bus master IDE registers
96 contiguous bytes st divisible boundary		ICH (ACPI + TCO)
64 contiguous bytes st divisible boundary	arting on a 64-byte	Desktop board resource
256 contiguous bytes starting on a 256-byte divisible boundary		ICH audio mixer
64 contiguous bytes starting on a 64-byte divisible boundary		ICH audio bus master
256 contiguous bytes starting on a 256-byte divisible boundary		ICH modem mixer
32 contiguous bytes starting on a 32-byte divisible boundary		ICH (USB)
16 contiguous bytes starting on a 16-byte divisible boundary		ICH (SMB)
4096 contiguous bytes divisible boundary	starting on a 4096-byte	Intel 82801AA PCI bridge
96 contiguous bytes starting on a 128-byte divisible boundary		LPC47M102 PME status

^{*} Default, but can be changed to another address range.

^{**} Dword access only
*** Byte access only

■ NOTE

Some additional I/O addresses are not available due to ICH addresses aliassing. For information about the ICH addressing, refer to the Intel web site at:

http://developer.intel.com/design/chipsets/datashts/

2.5 PCI Configuration Space Map

Table 12. PCI Configuration Space Map

Bus Number (hex)	Device Number (hex)	Function Number (hex)	Description
00	00	00	Intel 82810E Graphics/Memory Controller Hub (GMCH)
00	01	00	Intel 82810E Graphics/Memory Controller Hub (GMCH)
00	1E	00	Hub link to PCI bridge
00	1F	00	Intel 82801AA I/O Controller Hub PCI to LPC bridge
00	1F	01	IDE
00	1F	02	USB
00	1F	03	SMBUS
00	1F	05	AC '97 audio controller or reserved
00	1F	06	AC '97 modem controller or reserved
01	08	00	PCI expansion slot 1 (J4C1)
01	09	00	PCI expansion slot 2 (J4B1)
01	0A	00	PCI expansion slot 3 (J4A2)
01	0B	00	PCI expansion slot 4 (J4A1)

2.6 Interrupts

Table 13. Interrupts

IRQ	System Resource
NMI	I/O channel check
0	Reserved, interval timer
1	Reserved, keyboard buffer full
2	Reserved, cascade interrupt from slave PIC
3	COM2* (user available if COM2 is not present)
4	COM1*
5	LPT2 (Plug and Play option) / audio / user available
6	Diskette drive controller
7	LPT1*
8	Real time clock
9	User available
10	User available
11	User available
12	Onboard mouse port (if present, else user available)
13	Reserved, math coprocessor
14	Primary IDE (if present, else user available)
15	Secondary IDE (if present, else user available)

^{*} Default, but can be changed to another IRQ

2.7 PCI Interrupt Routing Map

This section describes interrupt sharing and how the interrupt signals are connected between the PCI expansion slots and onboard PCI devices. The PCI specification specifies how interrupts can be shared between devices attached to the PCI bus. In most cases, the small amount of latency added by interrupt sharing does not affect the operation or throughput of the devices. In some special cases where maximum performance is needed from a device, a PCI device should not share an interrupt with other PCI devices. Use the following information to avoid sharing an interrupt with a PCI add-in card.

PCI devices are categorized as follows to specify their interrupt grouping:

- INTA: By default, all add-in cards that require only one interrupt are in this category. For almost all cards that require more than one interrupt, the first interrupt on the card is also classified as INTA.
- INTB: Generally, the second interrupt on add-in cards that require two or more interrupts is classified as INTB. (This is not an absolute requirement.)
- INTC and INTD: Generally, a third interrupt on add-in cards is classified as INTC and a fourth interrupt is classified as INTD.

The ICH has four programmable interrupt request (PIRQ) input signals. Any PCI interrupt source (either onboard or from a PCI add-in card) connects to one of these PIRQ signals. Because there are only four signals, some PCI interrupt sources are mechanically tied together on the desktop board and therefore share the same interrupt. Table 14 shows an example of how the PIRQ signals might be connected to PCI expansion slots and to onboard PCI interrupt sources.

Table 14. PCI Interrupt Routing Map

	ICH PIRQ Signal Name			
PCI Interrupt Source	PIRQA	PIRQB	PIRQC	PIRQD
AGP Connector	INTA			
ICH Audio Controller		INTB		
ICH SMBUS Controller		INTB		
ICH USB Controller				INTD
PCI Bus Connector 1 (J4C1)	INTA	INTB	INTC	INTD
PCI Bus Connector 2 (J4B1)	INTD	INTA	INTB	INTC
PCI Bus Connector 3 (J4A2)	INTC	INTD	INTA	INTB
PCI Bus Connector 4 (J4A1)	INTB	INTC	INTD	INTA

Using the example shown in Table 14, assume an add-in card with one interrupt (group INTA) is inserted into the second PCI slot. In this slot, an interrupt source from group INTA connects to the PIRQB signal, which is already connected to the audio and SMBUS controller sources. The add-in card shares an interrupt with these onboard interrupt sources.

2.8 Connectors

A CAUTION

Only the back panel connectors of this board have overcurrent protection. The internal board connectors do not have overcurrent protection; they should connect only to devices inside the computer chassis, such as fans and internal peripherals. Do not use these connectors for powering devices external to the computer chassis. A fault in the load presented by the external devices could cause damage to the computer, the interconnecting cable, and the external devices themselves.

This section describes the board's connectors. The connectors can be divided into the following groups:

- Back panel I/O connectors (see page 42)
 - PS/2 keyboard
 - PS/2 mouse
 - USB (2)
 - Serial port A
 - Parallel port
 - VGA port
 - MIDI/Game port
 - Audio line out
 - Audio line in
 - Mic in
- Internal I/O connectors (see page 46)
 - ATAPI CD-ROM
 - Telephony
 - Diskette drive
 - IDE (2)
 - Fans (2)
 - Wake on LAN technology
 - Chassis intrusion
 - Power
 - PCI bus add-in board
- External I/O connectors (see page 53)
 - Serial port B
 - USB front panel

2.8.1 Back Panel Connectors

Figure 5 shows the location of the back panel connectors.

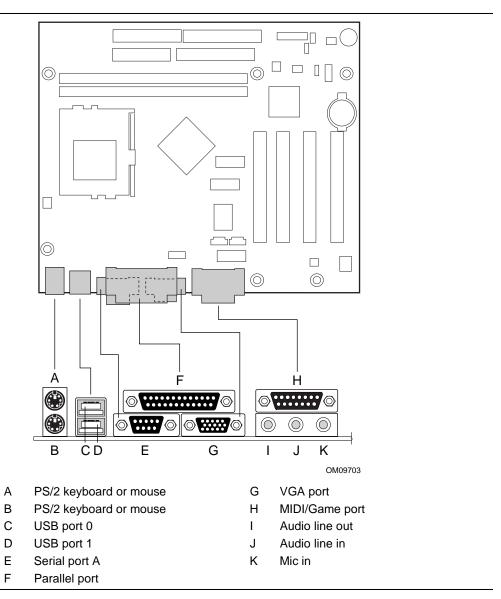


Figure 5. Back Panel Connectors

Table 15. PS/2 Keyboard/Mouse Connectors

Pin	Signal
1	Data
2	Not connected
3	Ground
4	Fused +5 V
5	Clock
6	Not connected

Table 16. USB Connectors

Pin	Signal
1	Fused +5 V
2	3.3V differential USB signal USB_D-
3	3.3V differential USB signal USB_D+
4	Ground

Table 17. Serial Port A Connector

Pin	Signal
1	DCD (Data Carrier Detect)
2	SIN# (Serial Data In)
3	SOUT# (Serial Data Out)
4	DTR (Data Terminal Ready)
5	Ground
6	DSR (Data Set Ready)
7	RTS (Request to Send)
8	CTS (Clear to Send)
9	RI (Ring Indicator)

Table 18. Parallel Port Connector

Pin	Std Signal	ECP Signal	EPP Signal	I/O
1	STROBE#	STROBE#	WRITE#	I/O
2	PD0	PD0	PD0	I/O
3	PD1	PD1	PD1	I/O
4	PD2	PD2	PD2	I/O
5	PD3	PD3	PD3	I/O
6	PD4	PD4	PD4	I/O
7	PD5	PD5	PD5	I/O
8	PD6	PD6	PD6	I/O
9	PD7	PD7	PD7	I/O
10	ACK#	ACK#	INTR	1
11	BUSY	BUSY#, PERIPHACK	WAIT#	1
12	PERROR	PE, ACKREVERSE#	PE	I
13	SELECT	SELECT	SELECT	I
14	AUDOFD#	AUDOFD#, HOSTACK	DATASTB#	0
15	FAULT#	FAULT#, PERIPHREQST#	FAULT#	1
16	INIT#	INIT#, REVERSERQST#	RESET#	0
17	SLCTIN#	SLCTIN#	ADDRSTB#	0
18 - 25	GND	GND	GND	-

Table 19. VGA Port Connector

Pin	Signal
1	RED
2	GREEN
3	BLUE
4	Not connected
5	GND
6	GND
7	GND
8	GND
9	FUSED VCC
10	GND
11	Not connected
12	DDC_SDA
13	HSYNC
14	VSYNC
15	DDC_SCL

Table 20. MIDI/Game Port Connector

Pin	Signal	Pin	Signal
1	+5 V (fused)	9	+5 V (fused)
2	GP4 (JSBUT0)	10	GP6 (JSBUT2)
3	GP0 (JSX1)	11	GP2 (JSX2)
4	Ground	12	MIDI-OUT
5	Ground	13	GP3 (JSY2)
6	GP1 (JSY1)	14	GP7 (JSBUT3)
7	GP5 (JSBUT1)	15	MIDI-IN
8	+5 V (fused)		

Table 21. Audio Line Out Connector

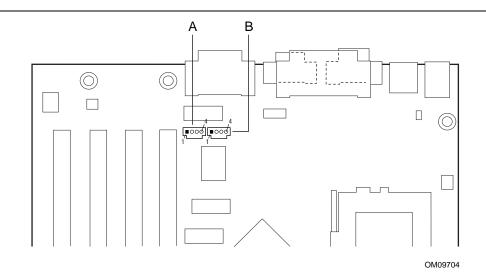
Pin	Signal
Tip	Audio left out
Ring	Audio right out
Sleeve	Ground

Table 22. Audio Line In Connector

Pin	Signal
Tip	Audio left in
Ring	Audio right in
Sleeve	Ground

Table 23. Audio Mic In Connector

Pin	Signal
Tip	Mono in
Ring	Mic bias voltage
Sleeve	Ground


2.8.2 Internal I/O Connectors

The internal I/O connectors are divided into the following functional groups:

- Audio (see page 46)
 - ATAPI CD-ROM
 - Telephony
- Peripheral interfaces (see page 47)
 - IDE (2)
 - Diskette drive
- Hardware Management and Power (see page 49)
 - Fans (2)
 - Wake on LAN technology
 - Chassis intrusion
 - Power
- PCI bus add-in boards (4) (see page 51)

2.8.2.1 Audio

Figure 6 shows the location of the audio connectors.

Item	Description	Color	Style	Reference Designator
Α	ATAPI CD-ROM	black	ATAPI	J2C1
В	Telephony	green	ATAPI	J2D2

Figure 6. Audio Connectors

Table 24. ATAPI CD-ROM Connector (J2C1)

Pin	Signal
1	Left audio input from CD-ROM
2	CD audio differential ground
3	CD audio differential ground
4	Right audio input from CD-ROM

Table 25. Telephony Connector (J2D2)

Pin	Signal
1	Analog audio mono input
2	Ground
3	Ground
4	Analog audio mono output

2.8.2.2 Peripheral Interfaces

Figure 7 shows the location of the peripheral interface connectors.

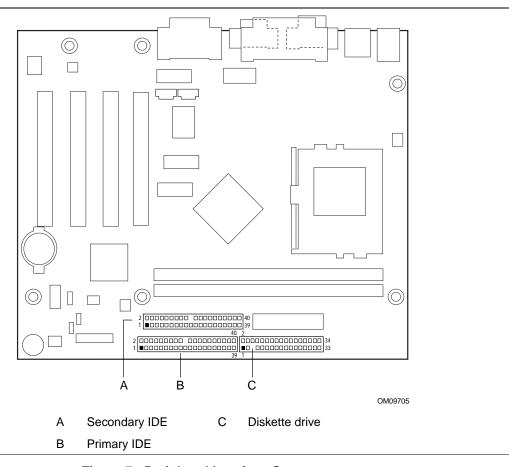


Figure 7. Peripheral Interface Connectors

Table 26. PCI IDE Connectors (J8D1, J8D2)

Pin	Signal	Pin	Signal
1	Reset IDE	2	Ground
3	Data 7	4	Data 8
5	Data 6	6	Data 9
7	Data 5	8	Data 10
9	Data 4	10	Data 11
11	Data 3	12	Data 12
13	Data 2	14	Data 13
15	Data 1	16	Data 14
17	Data 0	18	Data 15
19	Ground	20	Key
21	DDRQ0 [DDRQ1]	22	Ground
23	I/O Write#	24	Ground
25	I/O Read#	26	Ground
27	IOCHRDY	28	P_ALE (Cable Select pull-up)
29	DDACK0# [DDACK1#]	30	Ground
31	IRQ 14 [IRQ 15]	32	Reserved
33	DAG1 (Address 1)	34	Reserved
35	DAG0 (Address 0)	36	DAG2Address 2
37	Chip Select 1P# [Chip Select 1S#]	38	Chip Select 3P# [Chip Select 3S#]
39	Activity#	40	Ground

NOTE: Signal names in brackets ([]) are for the secondary IDE connector.

Table 27. Diskette Drive Connector (J8F2)

Pin	Signal	Pin	Signal
1	Ground	2	DENSEL
3	Ground	4	Reserved
5	Key	6	FDEDIN
7	Ground	8	FDINDX# (Index)
9	Ground	10	FDM00# (Motor Enable A)
11	Ground	12	No connect
13	Ground	14	FDDS0# (Drive Select A)
15	Ground	16	No connect
17	No connect	18	FDDIR# (Stepper Motor Direction)
19	Ground	20	FDSTEP# (Step Pulse)
21	Ground	22	FDWD# (Write Data)
23	Ground	24	FDWE# (Write Enable)
25	Ground	26	FDTRK0# (Track 0)
27	No connect	28	FDWPD# (Write Protect)
29	Ground	30	FDRDATA# (Read Data)
31	Ground	32	FDHEAD# (Side 1 Select)
33	Ground	34	DSKCHG# (Diskette Change)

2.8.2.3 Hardware Management and Power

Figure 8 shows the location of the hardware management and power connectors.

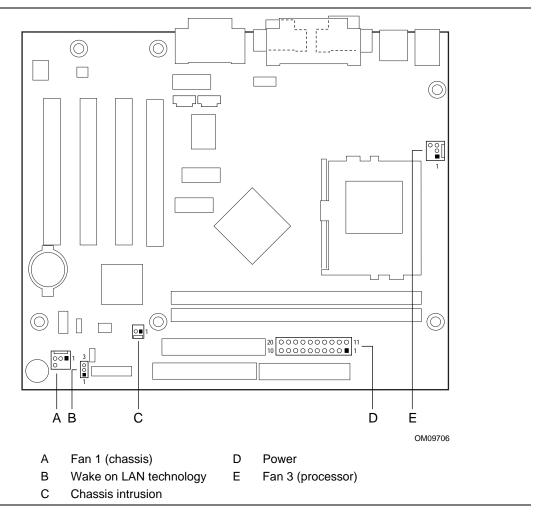


Figure 8. Hardware Management and Power Connectors

For information about	Refer to		
Wake on LAN technology	Section 1.11.2.1, page 32		
Functions of the fan connectors	Section 1.11.2.5, page 34		

Table 28. Fan 1 (Chassis) Connector (J8A3)

Pin	Signal
1	Ground
2	+12 V (FAN_C)
3	No connect

Table 29. Wake on LAN Technology Connector (J8A2)

Pin	Signal
1	+5 VSB
2	Ground
3	WOL

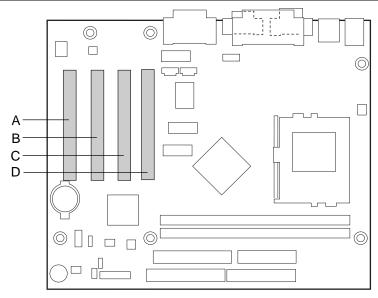
Table 30. Chassis Intrusion Connector (J7B2)

Pin	Signal
1	CHS_SECURITY
2	Ground

Table 31. Power Connector (J8F1)

Pin	Signal	Pin	Signal
1	+3.3 V	11	+3.3 V
2	+3.3 V	12	-12 V
3	Ground	13	Ground
4	+5 V	14	PS-ON# (power supply remote on/off)
5	Ground	15	Ground
6	+5 V	16	Ground
7	Ground	17	Ground
8	PWRGD (Power Good)	18	-5 V
9	+5 VSB (Standby for real-time clock)	19	+5 V
10	+12 V	20	+5 V

Table 32. Fan 3 (Processor) Connector (J3J1)


Pin	Signal
1	Ground
2	+12 V
3	Ground

2.8.2.4 PCI Bus Add-In Board Connectors

Figure 9 shows the location of the add-in board connectors. Note the following considerations for the PCI bus connectors:

- All of the PCI bus connectors are bus master capable
- PCI bus connector 2 has optional SMBUS signals routed to it. This enables PCI bus add-in boards with SMBUS support to access sensor data on the board. The specific SMBus signals are as follows:
 - The SMBUS clock line is connected to pin A40
 - The SMBUS data line is connected to pin A41

Table 33 lists the signal names for the PCI bus connectors.

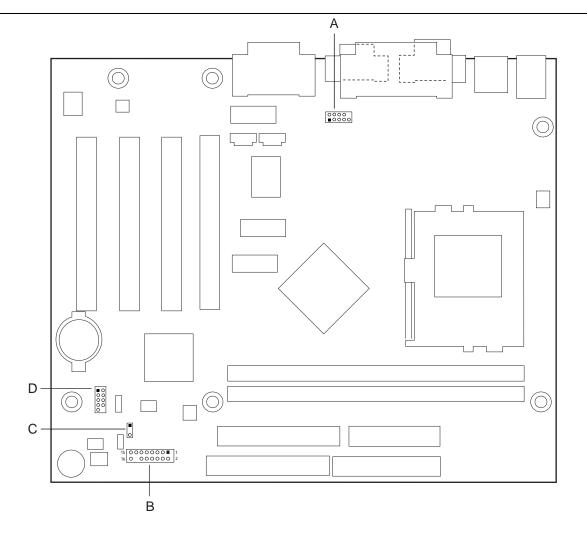
OM09707

Item	Description	Reference Designator
Α	PCI bus connector 4	J4A1
В	PCI bus connector 3	J4A2
С	PCI bus connector 2	J4B1
D	PCI bus connector 1	J4C1

Figure 9. PCI Bus Add-In Board Connectors

Table 33. PCI Bus Connectors

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
A1	Ground (TRST#)*	B1	-12 V	A32	AD16	B32	AD17
A2	+12 V	B2	Ground (TCK)*	A33	+3.3 V	B33	C/BE2#
A3	+5 V (TMS)*	В3	Ground	A34	FRAME#	B34	Ground
A4	+5 V (TDI)*	B4	no connect (TDO)*	A35	Ground	B35	IRDY#
A5	+5 V	B5	+5 V	A36	TRDY#	B36	+3.3 V
A6	INTA#	B6	+5 V	A37	Ground	B37	DEVSEL#
A7	INTC#	B7	INTB#	A38	STOP#	B38	Ground
A8	+5 V	B8	INTD#	A39	+3.3 V	B39	LOCK#
A9	Reserved	B9	no connect (PRSNT1#)*	A40	Reserved**	B40	PERR#
A10	+5 V (I/O)	B10	Reserved	A41	Reserved***	B41	+3.3 V
A11	Reserved	B11	no connect (PRSNT2#)*	A42	Ground	B42	SERR#
A12	Ground	B12	Ground	A43	PAR	B43	+3.3 V
A13	Ground	B13	Ground	A44	AD15	B44	C/BE1#
A14	+3.3 V aux	B14	Reserved	A45	+3.3 V	B45	AD14
A15	RST#	B15	Ground	A46	AD13	B46	Ground
A16	+5 V (I/O)	B16	CLK	A47	AD11	B47	AD12
A17	GNT#	B17	Ground	A48	Ground	B48	AD10
A18	Ground	B18	REQ#	A49	AD09	B49	Ground
A19	PME#	B19	+5 V (I/O)	A50	Key	B50	Key
A20	AD30	B20	AD31	A51	Key	B51	Key
A21	+3.3 V	B21	AD29	A52	C/BE0#	B52	AD08
A22	AD28	B22	Ground	A53	+3.3 V	B53	AD07
A23	AD26	B23	AD27	A54	AD06	B54	+3.3 V
A24	Ground	B24	AD25	A55	AD04	B55	AD05
A25	AD24	B25	+3.3 V	A56	Ground	B56	AD03
A26	IDSEL	B26	C/BE3#	A57	AD02	B57	Ground
A27	+3.3 V	B27	AD23	A58	AD00	B58	AD01
A28	AD22	B28	Ground	A59	+5 V (I/O)	B59	+5 V (I/O)
A29	AD20	B29	AD21	A60	REQ64C#	B60	ACK64C#
A30	Ground	B30	AD19	A61	+5 V	B61	+5 V
A31	AD18	B31	+3.3 V	A62	+5 V	B62	+5 V


^{*} These signals (in parentheses) are optional in the PCI specification and are not currently implemented.

^{**} On PCI bus connector 2, this pin is connected to the optional SMBus clock line.

^{***} On PCI bus connector 2, this pin is connected to the optional SMBus data line.

2.8.3 External I/O Connectors

Figure 10 shows the locations of the external I/O connectors.

OM09708

Item	Description	Reference Designator
Α	Serial port B (see Table 34, page 54)	J2E1
В	Front panel (see Table 35, page 54)	J4A2
С	Front panel power LED (see Table 35, page 55)	J4B1
D	USB port 0 front panel (see Table 39, page 56)	J4C1

Figure 10. Front Panel Connectors

2.8.3.1 Serial Port B Connector

Table 34 lists the signal names for the serial port B connector.

Table 34. Serial Port B Connector (J2E1)

Pin	Signal	Pin	Signal
1	DCD (Data Carrier Detect)	2	DSR (Data Set Ready)
3	SIN# (Serial Data In)	4	RTS (Request to Send)
5	SOUT# (Serial Data Out)	6	CTS (Clear to Send)
7	DTR (Data Terminal Ready)	8	RI (Ring Indicator)
9	Ground		

2.8.3.2 Front Panel Connector

Table 35 lists the signal names of the front panel connector. After the IrDA interface is configured, files can be transferred to or from portable devices such as laptops, PDAs, and printers using application software.

Table 35. Front Panel Connector (J8B1)

Pin	Signal	In/Out	Description	Pin	Signal	In/Out	Description
	Hard Drive Activity LED				Powe	er LED	
1	HD_PWR	Out	Hard disk LED pull-up (330 Ω) to +5 V	2	HDR_BLNK_GRN	Out	Front panel green LED
3	HDA#	Out	Hard disk active LED	4	HDR_BLNK_YEL	Out	Front panel yellow LED
Reset Switch			On / Off Switch				
5	GND		Ground	6	FPBUT_IN	In	Front panel On/Off button
7	FP_RESET#	In	Front panel Reset button	8	GND		Ground
		Infrared	Port		Miscel	laneous	
9	+5 V	Out	IR Power	10	N/C	In	Not connected
11	IRRX	In	IrDA [†] serial input	12	GND		Ground
13	GND		Ground	14	(Pin removed)		Not connected
15	IRTX	Out	IrDA serial output	16	+5 V	Out	Power

2.8.3.2.1 Hard Drive Activity LED

Pins 1 and 3 can be connected to an LED to provide a visual indicator that data is being read from or written to a hard drive. For the LED to function properly, an IDE drive must be connected to the onboard hard drive controller.

2.8.3.2.2 Reset Switch Connector

Pins 5 and 7 can be connected to a momentary SPST type switch that is normally open. When the switch is closed, the board resets and runs the POST.

2.8.3.2.3 Infrared Port Connector

Serial Port B can be configured to support an IrDA module connected to pins 9, 11, 13, and 15.

For information about	Refer to
Infrared support	Section 1.7.2, page 22
Configuring serial port B for infrared applications	Section 4.5.3, page 82

2.8.3.2.4 Power LED Connector

Pins 2 and 4 can be connected either a single or dual colored LED that will light when the computer is powered on. Table 36 and Table 37 show the possible states for these LEDs.

Table 36. Power LED (Single colored)

LED State	Description
Off	Off
Steady Green	Running
Blinking Green	Running or message waiting (Note)

Note: To utilize the message waiting function, an OnNow / Instantly Available aware message capturing software application must be invoked.

Table 37. Power LED (Dual colored)

LED State	Description
Off	Off
Steady Green	Running
Blinking Green	Running or message waiting (Note)
Steady Yellow	Sleeping
Blinking Yellow	Sleeping or message waiting (Note)

Note: To utilize the message waiting function, an OnNow / Instantly Available aware message capturing software application must be invoked.

2.8.3.2.5 On / Off Switch Connector

Pins 6 and 8 can be connected to a momentary SPST type switch that is normally open. The switch must pull the SW_ON# pin to ground for at least 50 ms to signal the power supply to switch on or off. (The time requirement is due to internal debounce circuitry on the board.) At least two seconds must pass before the power supply will recognize another on/off signal.

2.8.3.3 Front Panel Power LED Connector

Table 38 lists the signal names of the front panel LED connector.

Table 38. Front Panel Power LED Connector (J8A1)

Pin	Signal	In/Out	Description
1	HDR_BLNK_GRN	Out	Front panel green LED
2			Not connected
3	HDR_BLNK_YEL	Out	Front panel yellow LED

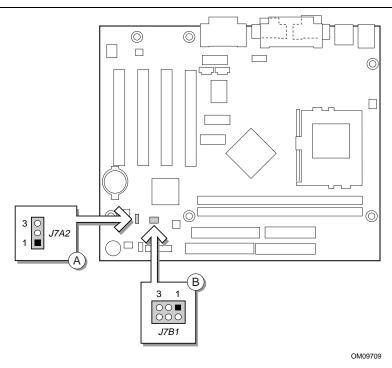
Pins 1 and 3 can be connected to either a single or dual colored LED that will light when the computer is powered on. Table 36 and Table 37 show the possible states for these LEDs.

2.8.3.4 **USB Port 0 Front Panel Connector**

Table 39 lists the signal names of the USB port connector.

Table 39. USB Port 0 Front Panel Connector (J7A1)

Pin	Signal	Pin	Signal	
1	TP_FPUSB_1	2	VCC	
3	Ground	4	TP_FUSB_4	
5	TP_FPUSB_5	6	FNT_USBP0	
7	Ground	8	FNT_USBP0 #	
9	Ground			


Jumper Blocks 2.8.4

The desktop board has two jumper blocks. Figure 11 shows the location of the desktop board's jumper blocks.

1 CAUTION

Do not move any jumpers with the power on. Always turn off the power and unplug the power cord from the computer before changing a jumper. Otherwise, damage to the desktop board could occur.

BIOS setup configuration jumper block

USB Port 0 configuration jumper block

Figure 11. Location of the Jumper Blocks

2.8.4.1 BIOS Setup Configuration Jumper Block

This 3-pin jumper block enables all desktop board configuration to be done in BIOS Setup. Table 40 describes the jumper settings for normal, configure, and recovery modes.

Table 40. BIOS Setup Configuration Jumper Settings

Function / Mode	Jumper Setting	Configuration
Normal	1-2	The BIOS uses current configuration information and passwords for booting.
Configure	2-3	After the POST runs, Setup runs automatically. The maintenance menu is displayed.
Recovery	none 3	The BIOS attempts to recover the BIOS configuration. A recovery diskette is required.

2.8.4.2 USB Port 0 Configuration Jumper Block

This 6-pin jumper block allows rerouting of USB Port 0. Table 41 describes the jumper settings.

Table 41. USB Port 0 Configuration Jumper Settings

Jumper Setting		Configuration
2-3 and 5-6	3 1	USB Port 0 signals are routed to the back panel
1-2 and 4-5	3 1 0 0 0 0 6 4	USB Port 0 signals are routed for a front panel USB connector

2.9 Mechanical Considerations

2.9.1 Form Factor

The board is designed to fit into a microATX or a standard ATX form factor chassis. Figure 12 illustrates the mechanical form factor for the board. Dimensions are given in inches and [millimeters]. The outer dimensions are 9.4 x 8.5 inches [238.76 x 215.9 millimeters]. Location of the I/O connectors and mounting holes are in strict compliance with the microATX specification (see Section 1.3 on page 15).

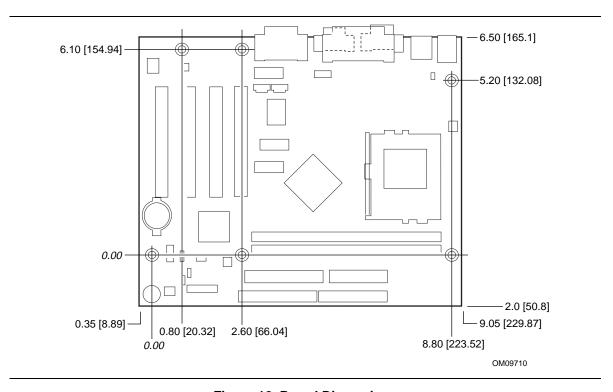


Figure 12. Board Dimensions

2.9.2 I/O Shield

The back panel I/O shield for the board must meet specific dimension and material requirements. Systems based on this board need the back panel I/O shield to pass certification testing. Figure 13 shows the critical dimensions of the chassis-independent I/O shield. Dimensions are given in millimeters and [inches]. The figure indicates the position of each cutout. Additional design considerations for I/O shields relative to chassis requirements are described in the microATX specification (see Section 1.3 on page 15).

⇒ NOTE

A chassis-independent I/O shield designed to be compliant with the microATX chassis specification is available from Intel. The actual punchouts may differ depending on the board manufacturing options.

Figure 13. Back Panel I/O Shield Dimensions (microATX Chassis - Independent)

2.10 Electrical Considerations

2.10.1 Power Consumption

Table 42 lists typical power usage measurements. These figures are provided to assist in selecting appropriate desktop power supplies for the WL810E board. Power usage measurements will vary depending upon actual system configurations.

The power measurements listed in Table 42 were made with a desktop computer containing the WL810E board and the following:

- 533 MHz Intel Celeron processor with a 128 KB cache
- 96 MB SDRAM
- 3.5-inch diskette drive
- 8.4 GB IDE hard disk drive
- IDE CD-ROM drive
- IDE DVD drive

This information is provided only as a guide for calculating approximate power usage with additional resources added.

Values for the Windows 98 desktop mode are measured at 640 x 480 x 256 colors and 60 Hz refresh rate. AC watts are measured with a typical 200 W supply, nominal input voltage and frequency, with a true RMS wattmeter at the line input.

⇒ NOTE

Actual system power consumption depends upon system configuration. The power supply should comply with the recommendations found in the ATX form factor specification (see Section 1.3 on page 15 for specification information).

Table 42. Power Usage

	DC (amps) at:					
Mode	AC (watts)	+3.3 V	+5 V	+12 V	-12 V	+5 V sb
DOS prompt, power management disabled	45 W	1.456 A	3.844 A	0.171 A	0.023 A	0.076 A
Windows 98 desktop, power management disabled	45 W	1.478 A	3.573 A	0.192 A	0.023 A	0.076 A
Windows 98 desktop, ACPI enabled, in System Management Mode (SMM) (S1 state)	22 W	1.391 A	0.559 A	0.158 A	0.022 A	0.056 A
Suspend to RAM (S3 state)	0	0	0	0	0	0.075 A

2.10.2 Add-in Board Considerations

The board is designed to provide 2 A (average) of +5 V current for each add-in board. The total +5 V current draw for add-in boards in a fully-loaded board (all four expansion slots filled) must not exceed 6 A

In a system that includes PCI 2.2 compliant add-in boards that can wake the system using the PME# signal, the power supply must be capable of providing the +5 V standby current that those boards require in addition to the standby current required by the board. The 5 volt standby current required for a board with no onboard LAN is 300 mA.

2.10.3 Fan Power Requirements

Table 43 lists the maximum DC voltage and current requirements for fan 3 (the processor fan) when the board is in the Sleep mode or Normal operating mode. Power consumption is independent of the operating system used and other variables.

Table 43. Fan 3 (Processor Fan) DC Power Requirements

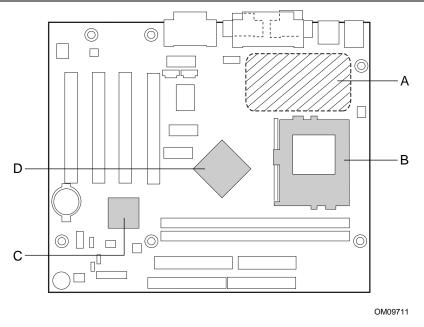
Mode	Voltage	Maximum Current
Sleep (S3 state)	0 VDC	1 A
Normal	12 VDC	1 A

2.10.4 Power Supply Considerations

System integrators should refer to the power usage values listed in Table 42 when selecting a power supply for use with this board. The power supply must comply with the following recommendations found in the indicated sections of the ATX form factor specification (see Section 6.2).

- The potential relation between 3.3 VDC and +5 VDC power rails (Section 4.2)
- The current capability of the +5 VSB line (Section 4.2.2.2)
- All timing parameters (Section 4.2.2.3)
- All voltage tolerances (Section 4.2.3)

2.11 Thermal Considerations


A CAUTION

An ambient temperature that exceeds the board's maximum operating temperature by 5 °C to 10 °C could cause components to exceed their maximum case temperature and malfunction. For information about the maximum operating temperature, see the environmental specifications in Section 2.13 on page 64.

CAUTION

The processor voltage regulator area (item A in Figure 14) can reach a temperature of up to 85 °C in an open chassis. System integrators should ensure that proper airflow is maintained in the voltage regulator circuit. Failure to do so may result in damage to the voltage regulator circuit.

Figure 14 shows the localized high-temperature zones.

- Α Voltage regulator area
- В PPGA processor
- С Intel 82801AA ICH
- Intel 82810E GMCH

Figure 14. High Temperature Zones

Table 44 provides maximum component case temperatures for board components that could be sensitive to thermal changes. Case temperatures could be affected by the operating temperature, current load, or operating frequency. Maximum case temperatures are important when considering proper airflow to cool the desktop board.

Table 44. Thermal Considerations for Components

Component	Maximum Case Temperature
Intel Pentium III processor	For processor case temperature, see processor datasheets and
Intel Celeron processor	processor specification updates.
Intel 82810E GMCH and optional	70 °C
82810E DC-133 GMCH	
Intel 82801AA ICH	100 °C
VREG area	70 °C - 85 °C

For information about	Refer to
Intel Pentium III processor datasheets and specification updates	Section 1.2, page 15
Intel Celeron processor datasheets and specification updates	Section 1.2, page 15

2.12 Reliability

The mean time between failures (MTBF) prediction is calculated using component and subassembly random failure rates. The calculation is based on the Bellcore Reliability Prediction Procedure, TR-NWT-000332, Issue 4, September 1991. The MTBF prediction is for estimating repair rates and spare parts requirements.

The Mean Time Between Failures (MTBF) data is calculated from predicted data at 55 °C.

Desktop board MTBF: 212,276 hours

2.13 Environmental Specifications

Table 45. Environmental Specifications

Parameter	Specification				
Temperature					
Nonoperating	-40 °C to +70 °C				
Operating	0 °C to +55 °C				
Shock					
Unpackaged	30 g trapezoidal waveform				
	Velocity change of	Velocity change of 170 inches/sec			
Packaged	Half sine 2 milliseco				
	Product Weight (lbs)	Free Fall (inches)	Velocity Change (inches/sec)		
	<20	36	167		
	21-40	30	152		
	41-80	24	136		
	81-100	18	118		
Vibration					
Unpackaged	5 Hz to 20 Hz: 0.01 g ² Hz sloping up to 0.02 g ² Hz				
	20 Hz to 500 Hz: 0.02 g ² Hz (flat)				
Packaged	10 Hz to 40 Hz: 0.015 g ² Hz (flat) 40 Hz to 500 Hz: 0.015 g ² Hz sloping down to 0.00015 g ² Hz				

2.14 Regulatory Compliance

This board complies with the following safety and EMC regulations when correctly installed in a compatible host system.

2.14.1 Safety Regulations

Table 46 lists the safety regulations the board complies with when it is correctly installed in a compatible host system.

Table 46. Safety Regulations

Regulation	Title
UL 1950/CSA950, 3 rd edition, Dated 07-28-95	Bi-National Standard for Safety of Information Technology Equipment including Electrical Business Equipment. (USA and Canada)
EN 60950, 2 nd Edition, 1992 (with Amendments 1, 2, 3, and 4)	The Standard for Safety of Information Technology Equipment including Electrical Business Equipment. (European Community)
IEC 950, 2 nd edition, 1991 (with Amendments 1, 2, 3, and 4)	The Standard for Safety of Information Technology Equipment including Electrical Business Equipment. (International)
EMKO-TSE (74-SEC) 207/94	Summary of Nordic deviations to EN 60950. (Norway, Sweden, Denmark, and Finland)

2.14.2 EMC Regulations

Table 47 lists the EMC regulations the board complies with when it is correctly installed in a compatible host system.

Table 47. EMC Regulations

Regulation	Title
FCC Class B	Title 47 of the Code of Federal Regulations, Parts 2 and 15, Subpart B, pertaining to unintentional radiators. (USA)
CISPR 22, 2 nd Edition, 1993 (Class B)	Limits and methods of measurement of Radio Interference Characteristics of Information Technology Equipment. (International)
VCCI Class B (ITE)	Implementation Regulations for Voluntary Control of Radio Interference by Data Processing Equipment and Electronic Office Machines. (Japan)
EN55022 (1994) (Class B)	Limits and methods of measurement of Radio Interference Characteristics of Information Technology Equipment. (Europe)
EN50082-1 (1992)	Generic Immunity Standard; Currently compliance is determined via testing to IEC 801-2, -3, and -4. (Europe)
ICES-003 (1997)	Interference-Causing Equipment Standard, Digital Apparatus, Class B (Including CRC c.1374). (Canada)
AS/NZ 3548	Australian Communications Authority (ACA), Standard for Electromagnetic Compatibility.

2.14.3 Certification Markings

This printed circuit assembly has the following product certification markings:

- UL Joint Recognition Mark: Consists of small c followed by a stylized backward UR and followed by a small US (Component side).
- Manufacturer's recognition mark: Consists of a unique UL recognized manufacturer's logo, along with a flammability rating (94V-0) (Solder side).
- UL File Number for motherboards: E139761 (Component side).
- PB Part Number: Intel bare circuit board part number (Solder side) A07299-002.
- Battery "+ Side Up" marking: Located on the component side of the board in close proximity to the battery holder.
- FCC Logo/Declaration: (Solder side).
- ACA (C-Tick) mark: Consists of a unique letter C, with a tick mark; followed by N-232. Located on the component side of the desktop board and on the shipping container.
- CE Mark: (Component side) The CE mark should also be on the shipping container.

3 Overview of BIOS Features

What This Chapter Contains

3.1	Introduction	67
3.2	BIOS Flash Memory Organization	68
3.3	Resource Configuration	68
	System Management BIOS (SMBIOS)	
3.5	BIOS Upgrades	70
	Recovering BIOS Data	
3.7	Boot Options	71
	USB Legacy Support	
3.9	BIOS Security Features	73

3.1 Introduction

The desktop board uses an Intel/AMI BIOS, which is stored in flash memory and can be upgraded using a disk-based program. The flash memory also contains the Setup program, POST, APM, ACPI, PCI autoconfiguration utility, and Windows 98-ready Plug and Play. See Section 1.3 for the supported versions of APM and ACPI.

This desktop board supports system BIOS shadowing, allowing the BIOS to execute from 64-bit onboard write-protected DRAM.

The BIOS displays a message during POST identifying the type of BIOS and a revision code. The initial production BIOS is identified as WL81020A.86A.

3.2 BIOS Flash Memory Organization

The Intel 82802AB Firmware Hub (FWH) is a high performance 4 Mbit (512 KB) symmetrical flash memory device. Internally, the device is grouped into eight 64 KB blocks that are individually erasable, lockable, and unlockable. Figure 15 shows the organization of the flash memory.

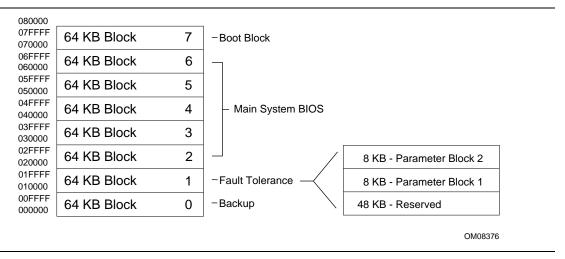


Figure 15. Memory Map of the Flash Memory Device

Symmetrical flash memory allows both the boot and the fault tolerance blocks to increase in size from 16 KB to 64 KB. This increase allows the addition of features such as dynamic memory detection, LS-120 recovery code, and extended security features.

The last two 8 KB blocks of the fault tolerance area are the parameter blocks. These blocks contain data such as BIOS updates, vital product data (VPD), logo, System Management BIOS (SMBIOS) interface, and extended system configuration data (ESCD) information. The backup block contains a copy of the fault tolerance block.

3.3 Resource Configuration

3.3.1 PCI Autoconfiguration

The BIOS can automatically configure PCI devices. PCI devices may be onboard or add-in cards. Autoconfiguration lets a user insert or remove PCI cards without having to configure the system. When a user turns on the system after adding a PCI card, the BIOS automatically configures interrupts, the I/O space, and other system resources. PCI devices can share an interrupt. Autoconfiguration information is stored in ESCD format.

For information about the versions of PCI and Plug and Play supported by this BIOS, see Section 1.3, page 15.

3.3.2 PCI IDE Support

→ NOTE

ATA-66 functionality is supported on boards that have the Intel 82801AA ICH component.

If the user selects Auto in Setup (see Section 4.5.5), the BIOS automatically sets up the two PCI IDE connectors with independent I/O channel support. The IDE interface supports hard drives up to PIO Mode 4 and recognizes any ATAPI devices, including CD-ROM drives, tape drives, and Ultra DMA drives (see Section 1.3 for the supported version of ATAPI). Add-in ISA IDE controllers are not supported. The BIOS determines the capabilities of each drive and configures it to optimize capacity and performance. You can override the autoconfiguration option by specifying User configuration in the IDE configuration Submenu of the BIOS Setup program.

To use the ATA-66 functionality, the following items are required:

- An ATA-66 peripheral device
- An ATA-66 compatible cable
- ATA-66 operating system device drivers

→ NOTE

ATA-66 compatible cables are backward compatible with drives using slower IDE transfer protocols. If an Ultra ATA/66 drive and a drive using any other IDE transfer protocol are attached to the same cable, the maximum transfer rate for either drive is 33 MB/second.

■ NOTE

Do not connect an ATA device as a slave on the same IDE cable as an ATAPI master device.

3.4 System Management BIOS (SMBIOS)

SMBIOS is an interface for managing computers in an enterprise environment. The main component of SMBIOS is the management information format (MIF) database, which contains information about the computing system and its components. Using SMBIOS, a system administrator can obtain the system types, capabilities, operational status, and installation dates for system components. The MIF database defines the data and provides the method for accessing this information. The BIOS enables applications such as Intel® LANDesk® Client Manager to use SMBIOS. The BIOS stores and reports the following SMBIOS information:

- BIOS data, such as the BIOS revision level
- Fixed-system data, such as peripherals, serial numbers, and asset tags
- Resource data, such as memory size, cache size, and processor speed
- Dynamic data, such as event detection and error logging

Non-Plug and Play operating systems, such as Windows NT, require an additional interface for obtaining SMBIOS information. The BIOS supports an SMBIOS table interface for such operating systems. Using this support, a SMBIOS service-level application running on a non-Plug and Play operating system can access the SMBIOS BIOS information.

3.5 BIOS Upgrades

A new version of the BIOS can be upgraded from a diskette using the Intel® Flash Memory Update Utility that is available from Intel. This utility supports the following BIOS maintenance functions:

- Update the flash BIOS from a file on a diskette
- Verify that the upgrade BIOS matches the target system to prevent accidentally installing an incompatible BIOS
- BIOS boot block update

■ NOTE

Please review the instructions distributed with the upgrade utility before attempting a BIOS upgrade.

3.5.1 Language Support

The Setup program and help messages are supported in five languages: American English, German, Italian, French, and Spanish. The default language is American English, which is present unless another language is selected in BIOS Setup.

The BIOS includes extensions to support the Kanji character set and other non-ASCII character sets. Translations of other languages may become available at a later date.

3.5.2 Custom Splash Screen

During POST, an Intel splash screen is displayed by default. This splash screen can be replaced with a custom splash screen. A utility is available from Intel to assist with creating a custom splash screen. The custom splash screen can be programmed into the flash memory using the BIOS upgrade utility. Information about this capability is available on the Intel Support world wide web site.

3.6 Recovering BIOS Data

Some types of failure can destroy the BIOS. For example, the data can be lost if a power outage occurs while the BIOS is being updated in flash memory. To recover the BIOS from a diskette, the user must set the BIOS Setup configuration jumper block to recovery mode (see page 57). When recovering the BIOS, the user must be aware of the following:

- Because of the small amount of code available in the nonerasable boot block area, there is no
 video support. The procedure can be monitored only by listening to the speaker and looking at
 the diskette drive LED.
- The recovery process may take several minutes; larger BIOS flash memory devices require more time.
- Two beeps and the end of activity in the diskette drive indicate successful BIOS recovery.
- A series of continuous beeps indicates a failed BIOS recovery.

To create a BIOS recovery diskette, a bootable diskette must be created and the recovery files copied to it.

⇒ NOTE

If the computer is configured to boot from an LS-120 diskette (in the Setup program's Boot menu), the BIOS recovery diskette must be a standard 1.44 MB diskette, not a 120 MB diskette.

3.7 Boot Options

In the Setup program, the user can choose to boot from a diskette drive, hard drives, CD-ROM, or the network. The default setting is for the diskette drive to be the primary boot device and the hard drive to be the secondary boot device. By default the fourth device is disabled.

3.7.1 CD-ROM and Network Boot

Booting from CD-ROM is supported in compliance with the El Torito bootable CD-ROM format specification. See Section 1.3 for information about the El Torito specification. Under the Boot menu in the Setup program, ATAPI CD-ROM is listed as a boot device. Boot devices are defined in priority order. If the CD-ROM is selected as the boot device, it must be the first device with bootable media.

The network can be selected as a boot device. This selection allows booting from a network add-in card with a remote boot ROM installed.

3.7.2 Booting Without Attached Devices

For use in embedded applications, the BIOS has been designed so that after passing the POST, the operating system loader is invoked even if the following devices are not present:

- Video adapter
- Keyboard
- Mouse

3.7.3 Default Settings After Battery and Power Failure

If the battery and AC power fail, standard defaults, not custom defaults, will be loaded into CMOS RAM at power on.

3.8 USB Legacy Support

USB legacy support enables a USB devices such as keyboards, mice, and hubs to be used even when no operating system USB drivers are in place. USB legacy support is used in accessing the BIOS Setup program and installing an operating system that supports USB. By default, USB legacy support is set to auto. The Auto setting will enable USB legacy support if a supported USB device is connected to the USB port.

This sequence describes how USB legacy support operates in the default (Auto) mode.

- 1. When you power up the computer, USB legacy support is disabled.
- 2. POST begins.
- 3. USB legacy support is temporarily enabled by the BIOS. This allows you to use a USB keyboard to enter the BIOS Setup program or the maintenance mode.
- 4. POST completes and disables USB legacy support (unless it was set to Enabled or Auto while in the BIOS Setup program).
- 5. The operating system loads. While the operating system is loading, USB keyboards and mice are not recognized (unless USB legacy support was set to Enabled or Auto while in the BIOS Setup program). After the operating system loads the USB drivers, the USB devices are recognized by the operating system.

To install an operating system that supports USB, enable USB legacy support or set it to Auto in the BIOS Setup program and follow the operating system's installation instructions. Once the operating system is installed and the USB drivers have been configured, USB legacy support is no longer used. USB legacy support can be left enabled or set to Auto in the BIOS Setup program if needed.

Notes on using USB legacy support:

- Do not use USB devices with an operating system that does not support USB. USB legacy is not intended to support the use of USB devices in a non-USB aware operating system.
- USB legacy support is for keyboards, mice, and hubs only. Other USB devices are not supported.

■ NOTES

If USB legacy support is enabled, do not mix USB and PS/2 keyboards and mice. For example, do not use a PS/2 keyboard with a USB mouse, or a USB keyboard and a PS/2 mouse.

Do not use USB devices with an operating system that does not support USB. USB legacy is not intended to support the use of USB devices in a non-USB aware operating system.

USB legacy support is for keyboards and mice only. Hubs and other USB devices are not supported.

3.9 BIOS Security Features

The BIOS includes security features that restrict access to the BIOS Setup program and restrict who can boot the computer. A supervisor password and a user password can be set for accessing the Setup program and for booting the computer, with the following restrictions:

- The supervisor password gives unrestricted access to view and change all the Setup options in the Setup program. This is supervisor mode.
- The user password gives restricted access to view and change Setup options in the Setup program. This is user mode.
- If only the supervisor password is set, pressing the <Enter> key at the password prompt of the Setup program allows the user restricted access to Setup.
- If both the supervisor and user passwords are set, users can enter either the supervisor password or the user password to access Setup. Users have access to Setup respective to which password is entered.
- Setting the user password restricts who can boot the computer. The password prompt will be
 displayed before the computer is booted. If only the supervisor password is set, the computer
 boots without asking for a password. If both passwords are set, the user can enter either
 password to boot the computer.

Table 48 shows the effects of setting the supervisor password and user password. This table is for reference only and is not displayed on the screen.

Table 48. Supervisor and User Password Functions

Password Set	Supervisor Mode	User Mode	Setup Options	Password to Enter Setup	Password During Boot
Neither	Can change all options *	Can change all options *	None	None	None
Supervisor only	Can change all options	Can change a limited number of options	Supervisor Password	Supervisor	None
User only	N/A	Can change all options	Enter Password Clear User Password	User	User
Supervisor and user set	Can change all options	Can change a limited number of options	Supervisor Password Enter Password	Supervisor or user	Supervisor or user

^{*} If no password is set, any user can change all Setup options.

See Section 4.6 for information about setting user and supervisor passwords.

WL810E Desktop Board Technical Product Specification

4 BIOS Setup Program

What This Chapter Contains

4.1	Introduction	75
4.2	Maintenance Menu	76
4.3	Extended Configuration Menu	77
	Main Menu	
4.5	Advanced Menu	79
4.6	Security Menu	90
4.7	Power Menu	91
4.8	Boot Menu	92
4.9	Exit Menu	93

4.1 Introduction

The Setup program is used for viewing and changing the BIOS settings for a computer. The user accesses Setup by pressing the <F2> key after the Power-On Self Test (POST) memory test begins and before the operating system boot begins.

The BIOS Setup program menus described in this chapter apply only to standard WL810E board with a BIOS identifier WL81020A.86A.

Table 49 shows the menus available from the menu bar at the top of the Setup screen.

Table 49. Setup Menu Bar

Setup Menu Screen Description	
Maintenance	Clears the Setup passwords. This menu is available only in configure mode. Refer to Section 2.8.4 for information about configure mode.
Main	Allocates resources for hardware components.
Advanced	Specifies advanced features available through the chipset.
Security	Specifies passwords and security features.
Power	Specifies power management features.
Boot	Specifies boot options and power supply controls.
Exit	Saves or discards changes to the Setup program options.

Table 50 shows the function keys available for menu screens.

Table 50. Setup Function Keys

Setup Key	Description		
<-> or <->>	Selects a different menu screen.		
<↑> or <↓>	Moves cursor up or down.		
<tab></tab>	Selects a field.		
<enter></enter>	Executes command or selects the submenu.		
<f9></f9>	Loads the default configuration values for the current menu.		
<f10></f10>	Saves the current values and exits Setup.		
<esc></esc>	Exits the menu.		

4.2 Maintenance Menu

The menu bar is shown below.

Maintenance	Main	Advanced	Security	Power	Boot	Exit
-------------	------	----------	----------	-------	------	------

This menu is for clearing the Setup passwords and extended configuration options. Setup only displays this menu in configure mode. See Section 2.8.4 on page 56 for information about setting configure mode.

Table 52. Maintenance Menu

Feature	Options	Description
Clear All Passwords	No options	Clears the user and administrative passwords.
Extended Configuration	No options	Allows user to manually configure advanced memory settings.

4.3 Extended Configuration Menu

The menu bar is shown below.

Maintenance Main Advanced Security Power	Boot	Exit
--	------	------

This menu allows the user to manually configure memory settings that are highly technical.

A CAUTION

Choosing the wrong settings could cause system problems. Do not change these settings unless you have all the necessary information about the installed memory.

Table 51. Extended Configuration Menu

Feature	Options	Description
Extended Configuration	Default (default)User defined	Enables access to the extended memory configuration options.
SDRAM Auto- Configuration	Auto (default)User defined	Sets extended memory configuration options to auto or user defined.
SDRAM CAS# Latency	• 3 • 2 • Auto (default)	Selects the number of clock cycles required to address a column in memory.
SDRAM RAS# to CAS# Delay	• 3 • 2 • Auto (default)	Selects the number of clock cycles between addressing a row and addressing a column.
SDRAM RAS# Precharge	32Auto (default)	Selects the length of time required before accessing a new row.

4.4 Main Menu

The menu bar is shown below.

Maintenance Main Advanced	Security	Power	Boot	Exit
---------------------------	----------	-------	------	------

This menu reports processor and memory information. This menu is used to set the system date and system time.

Table 52. Main Menu

Feature	Options	Description
BIOS Version	No options	Displays the version of the BIOS.
Processor Type	No options	Displays processor type.
Processor Speed	No options	Displays processor speed.
Cache RAM	No options	Displays the size of second-level cache.
Total Memory	No options	Displays the total amount of RAM on the motherboard.
Bank 0 Bank 1	No options	Displays size and type of DIMM installed in each memory bank.
System Time	Hour, minute, and second	Displays and allows system time to be set.
System Date	Month, day, and year	Displays and allows system date to be set.

4.5 Advanced Menu

The menu bar is shown below.

Maintenance	Main	Advanced	Security	Power	Boot	Exit
		Extended Configuration				
		PCI Config	guration			
		Boot Confi	iguration			
		Peripheral Configuration				
		IDE Configuration				
		Diskette Configuration				
		Event Log	Event Log Configuration			
		Video Conf	figuration			

This menu is used for setting advanced features that are available through the chipset.

Table 53. Advanced Menu

Feature	Options	Description
Extended Configuration	No options	Indicates whether extended configuration settings have been modified from the default setting.
PCI Configuration	No options	Allows access to PCI IRQ mapping.
Boot Configuration	No options	Configures Plug and Play and the Numlock key, and resets configuration data. When selected, displays the Boot Settings Configuration submenu.
Peripheral Configuration	No options	Configures peripheral ports and devices. When selected, displays the Peripheral Configuration submenu.
IDE Configuration	No options	Specifies type of connected IDE device. When selected, displays the IDE Configuration submenu.
Diskette Configuration	No options	When selected, displays the Floppy Options submenu. When selected, displays the Diskette Configuration submenu.
Event Log Configuration	No options	Configures Event Logging. When selected, displays the Event Log Configuration submenu.
Video Configuration	No options	Configures video features. When selected, displays the Video Configuration submenu.

4.5.1 PCI Configuration Submenu

The menu bar is shown below.

Maintenance	Main	Advanced	Security	Power	Boot	Exit
		Extended (Configuratio	on		
		PCI Config	guration			
		Boot Confi	iguration			
		Peripheral	Peripheral Configuration			
		IDE Config	IDE Configuration			
		Diskette (Configuratio	n		
		Event Log	Configurati	on		
		Video Conf	Eiguration			

This menu is used for setting the IRQ priorities of the PCI slots.

Table 54. PCI Configuration Submenu

Feature	Options	Description
PCI Slot2 IRQ Priority	Auto (default)	Allows user to map the PCI IRQ for slot 2 to a particular
	5	hardware interrupt.
	9	
	10	
	11	
PCI Slot3 IRQ Priority	Auto (default)	Allows user to map the PCI IRQ for slot 3 to a particular
	5	hardware interrupt.
	9	
	10	
	11	
PCI Slot4 IRQ Priority	Auto (default)	Allows user to map the PCI IRQ for slot 4 to a particular
	5	hardware interrupt.
	9	
	10	
	11	

4.5.2 Boot Setting Configuration Submenu

The menu bar is shown below.

Maintenance	Main	Advanced	Security	Power	-	Boot	Exit
		Extended (Extended Configuration				
		PCI Config	guration				
		Boot Confi	Boot Configuration				
		Peripheral Configuration					
		IDE Configuration					
		Diskette Configuration					
		Event Log Configuration					
		Video Conf	Eiguration				

This menu is used for setting Plug and Play and the Numlock key, and for resetting configuration data.

Table 55. Boot Setting Configuration Submenu

Feature	Options	Description
Plug & Play O/S	No (default) Yes	Specifies if a Plug and Play operating system is being used. No lets the BIOS configure all devices. Yes lets the operating system configure Plug and Play devices. Not required with a Plug and Play operating system.
Reset Config Data	No (default) Yes	Clears the BIOS configuration data on the next boot.
NumLock	Off On (default)	Specifies the power on state of the Numlock feature on the numeric keypad of the keyboard.

4.5.3 Peripheral Configuration Submenu

The menu bar is shown below.

Maintenance	Main	Advanced	Security	Power		Boot	Exit
		Extended (Configurati	on			
		PCI Config	guration				
		Boot Confi	Boot Configuration				
		Peripheral Configuration					
		IDE Configuration					
		Diskette Configuration					
		Event Log Configuration					
		Video Configuration					

This submenu is used for configuring the computer peripherals.

Table 56. Peripheral Configuration Submenu

Feature	Options	Description		
Serial port A	Disabled	Configures serial port A.		
	Enabled	Auto assigns the first free COM port, normally COM1, the		
	Auto (default)	address 3F8h, and the interrupt IRQ4.		
Base I/O address	3F8 (default)	Specifies the base I/O address for serial port A, if serial		
	• 3E8	port A is Enabled.		
	• 2E8			
Interrupt	• IRQ 3	Specifies the interrupt for serial port A, if serial port A is		
	IRQ 4 (default)	Enabled.		
Serial port B	Disabled	Configures serial port B.		
	Enabled			
	Auto (default)			
Mode	Normal (default)	Specifies the mode for serial port B for normal (COM2) of		
	IrDA SIR-A	infrared applications. This option is not available if serial		
	ASK_IR	port B has been disabled.		
Base I/O address	2F8 (default)	Specifies the base I/O address for serial port B.		
	• 3E8			
	• 2E8			
Interrupt	IRQ3 (default)	Specifies the interrupt for serial port B.		
	• IRQ4			
Parallel port	Disabled	Configures the parallel port.		
	Enabled	Auto assigns LPT1 the address 378h and the interrupt		
	Auto (default)	IRQ7.		
		An * (asterisk) displayed next to an address indicates a conflict with another device.		

 Table 56.
 Peripheral Configuration Submenu (continued)

Feature	Options	Description
Mode	Output Only Bidirectional	Selects the mode for the parallel port. Not available if the parallel port is disabled.
	(default)	Output Only operates in AT [†] -compatible mode.
	• EPP	Bidirectional operates in PS/2-compatible mode.
	• ECP	EPP is Extended Parallel Port mode, a high-speed bidirectional mode.
		ECP is Enhanced Capabilities Port mode, a high-speed bidirectional mode.
Base I/O address	• 378 (default)	Specifies the base I/O address for the parallel port.
	• 278	
	• 228	
Interrupt	• IRQ 5	Specifies the interrupt for the parallel port.
	• IRQ 7 (default)	
DMA	• 3 (default)	Specifies the DMA address for EEP or ECP mode.
	• 1	
Audio Device	Disabled	Configures the audio device.
	Enabled (default)	
Legacy USB Support	Disabled	Enables or disables legacy USB support.
	Enabled	(See Section 3.8 for more information.)
	Auto (default)	

4.5.4 IDE Configuration

The menu bar is shown below.

Maintenance	Main	Advanced	Security	Power		Boot	Exit
		Extended (Extended Configuration				
		PCI Config	guration				
		Boot Confi	Boot Configuration				
		Peripheral Configuration					
		IDE Configuration					
		Diskette (Configurati	on			
		Event Log	Configurat	ion			
		Video Conf	iguration				

Table 57. IDE Device Configuration

Feature	Options	Description
IDE Controller	DisabledPrimarySecondaryBoth (default)	Specifies the integrated IDE controller. Primary enables only the primary IDE controller. Secondary enables only the secondary IDE controller. Both enables both IDE controllers.
Hard Disk Pre-Delay	 Disabled (default) 3 Seconds 6 Seconds 9 Seconds 12 Seconds 15 Seconds 21 Seconds 30 Seconds 	Specifies the hard disk drive predelay.
Primary IDE Master	No options	Reports type of connected IDE device. When selected, displays the Primary IDE Master submenu.
Primary IDE Slave	No options	Reports type of connected IDE device. When selected, displays the Primary IDE Slave submenu.
Secondary IDE Master	No options	Reports type of connected IDE device. When selected, displays the Secondary IDE Master submenu.
Secondary IDE Slave	No options	Reports type of connected IDE device. When selected, displays the Secondary IDE Slave submenu.

4.5.5 IDE Configuration Submenus

The menu bar is shown below.

Maintenance	Main	Advanced	Security	Power	Boot	Exit
		Extended (Configurati	on		
		PCI Config	guration			
		Boot Confi	guration			
		Peripheral	Configura	tion		
		IDE Config	IDE Configuration			
		Prin	Primary IDE Master			
		Prin	mary IDE Sl	ave		
		Seco	ondary IDE	Master		
		Seco	ondary IDE	Slave		
		Diskette Configuration				
		Event Log	Event Log Configuration			
		Video Conf	iguration			

There is a submenu for configuring each of the following IDE devices:

- Primary IDE master
- Primary IDE slave
- Secondary IDE master
- Secondary IDE slave

Table 58. IDE Configuration Submenus

Feature	Options	Description
Туре	• None	Specifies the IDE configuration mode for IDE devices.
	• User	User allows the cylinders, heads, and sectors fields to
	 Auto (default) 	be changed.
	CD-ROM	Auto automatically fills in the values for the cylinders,
	ATAPI Removable	heads, and sectors fields.
	Other ATAPI	
	IDE Removable	
Maximum Capacity	No options	Reports the maximum capacity for the hard disk, if the type is User or Auto.
LBA Mode Control	Disabled	Enables or disables the LBA mode control.
	Enabled (default)	

 Table 59
 IDE Configuration Submenus (continued)

Multi-Sector Transfers	 Disabled 2 Sectors 4 Sectors 8 Sectors 16 Sectors (default) 	Specifies number of sectors per block for transfers from the hard disk drive to memory. Check the hard disk drive's specifications for optimum setting.
PIO Mode	 Auto (default) 0 1 2 3 4 	Specifies the method for moving data to/from the drive.
Ultra DMA	 Disabled (default) Mode 0 Mode 1 Mode 2 Mode 3* Mode 4* 	Specifies the Ultra DMA mode for the drive.

^{*} Available with ICH only.

4.5.6 Diskette Configuration Submenu

The menu bar is shown below.

Maintenance	Main	Advanced	Security	Power		Boot	Exit
		Extended Configuration					
		PCI Config	guration				
		Boot Confi	Boot Configuration				
		Peripheral Configuration					
		IDE Configuration					
		Diskette Configuration					
		Event Log Configuration					
		Video Configuration					

This submenu is used for configuring the diskette drive.

Table 59. Diskette Configuration Submenu

Feature	Options	Description
Diskette Controller	Disabled	Disables or enables the integrated diskette
	Enabled (default)	controller.
Floppy A:	Not Installed	Specifies the capacity and physical size of
	• 360 KB 5¼	diskette drive A.
	• 1.2 MB 51⁄4	
	• 720 KB 3½	
	• 1.44/1.25 MB 3½ (default)	
	• 2.88 MB 3½	
Diskette Write Protect	Disabled (default)	Disables or enables write protect for the
	Enabled	diskette drive.

4.5.7 Event Log Configuration

The menu bar is shown below.

Maintenance	Main	Advanced	Security	Power		Boot	Exit
		Extended Configuration					
		PCI Config	guration				
		Boot Confi	Boot Configuration				
		Peripheral Configuration					
		IDE Configuration					
		Diskette Configuration					
		Event Log Configuration					
		Video Configuration					

This submenu is used for configuring the event logging features.

Table 60. Event Log Configuration Submenu

Feature	Options	Description
Event Log	No options	Indicates if there is space available in the event log.
Event Log Validity	No options	Indicates if the contents of the event log are valid.
View Event Log	[Enter]	Displays the event log.
Clear All Event Logs	No (default)	Clears the event log after rebooting.
	• Yes	
Event Logging	Disabled	Enables logging of events.
	Enabled (default)	
Mark Events As Read	[Enter]	Marks all events as read.

4.5.8 Video Configuration Submenu

The menu bar is shown below.

Maintenance	Main	Advanced	Security	Power		Boot	Exit
		Extended Configuration					
		PCI Config	guration				
		Boot Confi	Boot Configuration				
		Peripheral Configuration					
		IDE Configuration					
		Diskette Configuration					
		Event Log Configuration					
		Video Configuration					

This submenu is used for setting the primary video controller slot.

Table 61. Video Configuration Submenu

Feature	Options	Description
Primary Video Adapter	AGP (default) PCI	Allows selecting an AGP or PCI video controller as the display device that will be active when the system boots.

4.6 Security Menu

The menu bar is shown below.

Maintenance Main Advanced	Security	Power	Boot	Exit
---------------------------	----------	-------	------	------

This menu is used for setting passwords and security features.

Table 62. Security Menu

Feature	Options	Description
Supervisor Password Is	No options	Reports if there is a supervisor password set.
User Password Is	No options	Reports if there is a user password set.
Set Supervisor Password	Password can be up to seven alphanumeric characters.	Specifies the supervisor password.
Set User Password	Password can be up to six alphanumeric characters.	Specifies the user password.
Clear User Password	No options	Allows the Supervisor to clear the user password.
User Access Level	Limited	Only date and time can be changed.
	No Access	No user access to BIOS Setup
	View Only	Can only view BIOS Setup, no changes can be made.
	Full (default)	User can make changes in BIOS Setup.
Unattended Start	Disable (default) Enable	Enables the unattended start feature. When enabled, the computer boots, but the keyboard is locked. The user must enter a password to unlock the computer or boot from a diskette.

4.7 Power Menu

The menu bar is shown below.

Maintenance Main Advanced Sect	rity Power	Boot	Exit
--------------------------------	------------	------	------

This menu is used for setting power management features.

Table 63. Power Menu

Feature	Options	Description
Power Management	DisabledEnabled (default)	Enables or disables the BIOS power management feature.
Inactivity Timer	 Off 1 Minute 5 Minutes 10 Minutes 20 Minutes (default) 30 Minutes 60 Minutes 120 Minutes 	Specifies the amount of time before the computer enters standby mode.
Hard Drive	DisabledEnabled (default)	Enables power management for hard disks during standby and suspend modes.
Video Power Down	DisabledStandbySuspend (default)Sleep	Specifies power management for video during standby and suspend modes.
ACPI Suspend State	• S1 State (default) • S3 State	S1 is the safest mode but consumes more power. S3 consumes low power but drivers may not support this state.

4.8 Boot Menu

The menu bar is shown below.

Maintenance Main Advanced Security	Power	Boot	Exit
------------------------------------	-------	------	------

This menu is used for setting the boot features and the boot sequence.

Table 64. Boot Menu

Feature	Options	Description
Quick Boot	Disabled Enabled (default)	Enables the computer to boot without running certain POST tests.
Quiet Boot	Disabled	Disabled displays normal POST messages.
	Enabled (default)	Enabled displays OEM logo instead of POST messages.
Scan User Flash Area	Disabled (default)Enabled	Enables the BIOS to scan the flash memory for user binary files that are executed at boot time.
After Power Failure	Stays Off Last State (default) Power On	Specifies the mode of operation if an AC/Power loss occurs. Stay Off keeps the power off until the power button is
		pressed. Last State restores the power state before power loss occurred.
On Modem Ring (Note 1)	Stay OffPower On (default)	Specifies how the computer responds to an incoming call on an installed modem when the power is off.
On LAN (Note 1)	Stay Off (default) Power On	Specifies how the computer responds to a LAN wake- up event when the power is off.
On PME (Note 1)	Stay Off (default) Power On	Specifies how the computer responds to a PCI Power Management Enable wake-up event when the power is off.
First Boot Device Second Boot Device	Floppy1st IDE-HDD (Note 2)	Specifies the boot sequence from the available devices. To specify the boot sequence:
Third Boot Device	• 2nd IDE-HDD	1. Select the boot device with <↑> or <↓>.
Fourth Boot Device	3rd IDE-HDD 4th IDE-HDD	2. Press <enter> to set the selection as the intended boot device.</enter>
	ARMD-FDD (Note 3) ARMD-HDD (Note 4)	The operating system assigns a drive letter to each boot device in the order listed. Changing the order of the devices changes the drive lettering.
	ATAPI CDROM SCSI	Not all of the devices in this list are available as second, third, and fourth boot devices.
	NetworkDisabled	For the first boot device, default is Floppy; for the second boot device, it is 1st IDE, for the third boot device, it is ATAPI CD-ROM; and for the fourth boot device, it is Disabled.

Notes:

- This is only applicable in the APM mode and not ACPI
 HDD = Hard Disk Drive
- 3. ARMD-FDD = ATAPI removable device floppy disk drive
- 4. ARMD-HDD = ATAPI removable device hard disk drive

4.9 Exit Menu

The menu bar is shown below.

Maintenance	Main	Advanced	Security	Power	Boot	Exit	
-------------	------	----------	----------	-------	------	------	--

This menu is used for exiting the Setup program, saving changes, and loading and saving defaults.

Table 65. Exit Menu

Feature	Description
Exit Saving Changes	Exits and saves the changes in CMOS SRAM.
Exit Discarding Changes Exits without saving any changes made in Setup.	
Load Setup Defaults	Loads the factory default values for all the Setup options.
Load Custom Defaults	Loads the custom defaults for Setup options.
Save Custom Defaults	Saves the current values as custom defaults. Normally, the BIOS reads the Setup values from flash memory. If this memory is corrupted, the BIOS reads the custom defaults. If no custom defaults are set, the BIOS reads the factory defaults.
Discard Changes	Discards changes without exiting Setup. The option values present when the computer was turned on are used.

WL810E Desktop Board Technical Product Specification

5 Error Messages and Beep Codes

What This Chapter Contains

5.1	BIOS Error Messages	95
5.2	Port 80h POST Codes	97
	Bus Initialization Checkpoints	
	Speaker	
5.5	BIOS Beep Codes	102

5.1 BIOS Error Messages

Table 66. BIOS Error Messages

Error Message	Explanation
GA20 Error	An error occurred with Gate-A20 when switching to protected mode during the memory test.
Pri Master HDD Error Pri Slave HDD Error Sec Master HDD Error Sec Slave HDD Error	Could not read sector from corresponding drive.
Pri Master Drive - ATAPI Incompatible Pri Slave Drive - ATAPI Incompatible Sec Master Drive - ATAPI Incompatible Sec Slave Drive - ATAPI Incompatible	Corresponding drive is not an ATAPI device. Run Setup to make sure device is selected correctly.
A: Drive Error B: Drive Error	No response from diskette drive.
Cache Memory Error	An error occurred while testing L2 cache. Cache memory may be bad.
CMOS Battery Low	The battery may be losing power. Replace the battery soon.
CMOS Display Type Wrong	The display type is different than what has been stored in CMOS. Check Setup to make sure type is correct.
CMOS Checksum Bad	The CMOS checksum is incorrect. CMOS memory may have been corrupted. Run Setup to reset values.
CMOS Settings Wrong	CMOS values are not the same as the last boot. These values have either been corrupted or the battery has failed.
CMOS Date/Time Not Set	The time and/or date values stored in CMOS are invalid. Run Setup to set correct values.
DMA Error	Error during read/write test of DMA controller.
FDC Failure	Error while trying to access diskette drive controller.
HDC Failure	Error while trying to access hard disk controller.

Table 66. BIOS Error Messages (continued)

Error Message	Explanation
Update Failed	NVRAM was invalid but was unable to be updated.
Unlock Keyboard	The system keyboard lock is engaged. The system must be unlocked to continue to boot.
Keyboard Error	Error in the keyboard connection. Make sure keyboard is connected properly.
KB/Interface Error	Keyboard Interface Test failed.
Timer Error	Timer Test failed.
Memory Size Changed	Memory size has changed since the last boot. If no memory was added or removed, then memory may be bad.
Serial presence detect (SPD) device data missing or inconclusive. Do you wish to boot at 100 MHz bus speed? [Y/N]	System memory does not appear to be SPD memory.
No Boot Device Available	System did not find a boot device.
Off Board Parity Error	A parity error occurred on an offboard card. This error is followed by an address.
On Board Parity Error	A parity error occurred in onboard memory. This error is followed by an address.
Parity Error	A parity error occurred in onboard memory at an unknown address.
NVRAM / CMOS / PASSWORD cleared by Jumper	NVRAM, CMOS, and passwords have been cleared. The system should be powered down and the jumper removed.
<ctrl_n> Pressed</ctrl_n>	CMOS is ignored and NVRAM is cleared. User must enter Setup.

5.2 Port 80h POST Codes

During the POST, the BIOS generates diagnostic progress codes (POST codes) to I/O port 80h. If the POST fails, execution stops and the last POST code generated is left at port 80h. This code is useful for determining the point where an error occurred.

Displaying the POST codes requires an add-in card (often called a POST card). The POST card can decode the port and display the contents on a medium such as a seven-segment display. These cards can be purchased from JDR Microdevices or other sources.

The following tables provide the POST codes that can be generated by the BIOS. Some codes are repeated in the table because a given code applies to more than one operation.

Table 67. Uncompressed INIT Code Checkpoints

Code	Description of POST Operation
D0	NMI is disabled. Onboard keyboard controller and real time clock enabled (if present). Initialization code checksum verification starting.
D1	Keyboard controller BAT test, CPU ID saved, and going to 4 GB flat mode.
D3	Initialize chipset, start memory refresh, and determine memory size.
D4	Verify base memory.
D5	Initialization code to be copied to segment 0 and control to be transferred to segment 0.
D6	Control is in segment 0. Used to check if in recovery mode and to verify main BIOS checksum. If in recovery mode or if main BIOS checksum is wrong, go to check point E0 for recovery. Otherwise, go to check point D7 to give control to main BIOS.
D7	Find main BIOS module in ROM image.
D8	Uncompress the main BIOS module.
D9	Copy main BIOS image to F000 shadow RAM and give control to main BIOS in F000 shadow RAM.

Table 68. Boot Block Recovery Code Checkpoints

Code	Description of POST Operation	
E0	Onboard diskette controller (if any) is initialized. Compressed recovery code is uncompressed at F000:0000 in shadow RAM. Give control to recovery code at F000 in shadow RAM. Initialize interrupt vector tables, system timer, DMA controller, and interrupt controller.	
E8	Initialize extra (Intel recovery) module.	
E9	Initialize diskette drive.	
EA	Try to boot from diskette. If reading of boot sector is successful, give control to boot sector code.	
EB	Boot from diskette failed; look for ATAPI (LS-120, Zip [†]) devices.	
EC	Try to boot from ATAPI device. If reading of boot sector is successful, give control to boot sector code.	
EF	Boot from diskette and ATAPI device failed. Give two beeps. Retry the booting procedure (go to check point E9).	

Table 69. Runtime Code Uncompressed in F000 Shadow RAM

Code	Description of POST Operation
03	NMI is Disabled. Check soft reset/power-on.
05	BIOS stack set. Disable cache if any.
06	Uncompress POST code.
07	Initialize processor and initialize processor data area.
08	Next, calculate CMOS checksum.
0B	Next, do any initialization before executing keyboard BAT.
0C	Keyboard controller I/B free. Issue the BAT command to keyboard controller.
0E	Any initialization after keyboard controller BAT to be done next.
0F	Write keyboard command byte.
10	Issue pin 23, 24 blocking/unblocking command.
11	Check whether <ins>, <end> keys were pressed during power on.</end></ins>
12	Initialize CMOS if "Init CMOS in every boot" is set or if <end> key is pressed. Then disable DMA and interrupt controllers.</end>
13	Video display is disabled and port B is initialized. Chipset initialization about to begin.
14	8254 Timer Test is about to start.
19	Memory Refresh Test is about to start.
1A	Memory Refresh line is toggling. Check 15 μs ON/OFF time.
23	Read 8042 input port and disable Megakey GreenPC feature. Make BIOS code segment writeable.
24	Do any setup before interrupt vector initialization.
25	Interrupt vector initialization to begin. Clear password if necessary.
27	Next, do any initialization before setting video mode.
28	Set monochrome mode and color mode.
2A	Start initialization of different buses, if present (system, static, output devices). (See Section 5.3 for details of different buses.)
2B	Give control for any setup required before optional video ROM check.
2C	Look for optional video ROM and give control.
2D	Give control to do any processing after video ROM returns control.
2E	If EGA/VGA not found, then execute Display Memory R/W Test.
2F	EGA/VGA not found. Display Memory R/W Test about to begin.
30	Display Memory R/W Test passed. Look for the retrace checking.
31	Display Memory R/W Test or retrace checking failed. Do Alternate Display Memory R/W Test.
32	Alternate Display Memory R/W Test passed. Look for the alternate display retrace checking.
34	Video display checking complete. Next, set display mode.
37	Display mode set. Then display the power-on message.
38	Start initialization of different buses, if present (input, IPL, general devices). (See Section 5.3 for details of different buses.)
39	Display different buses initialization error messages. (See Section 5.3 for details of different buses.)

Table 69. Runtime Code Uncompressed in F000 Shadow RAM (continued)

Code	Description of POST Operation
40	Prepare the descriptor tables.
42	Enter virtual mode for memory test.
43	Enable interrupts for diagnostics mode.
44	Initialize data to check memory wrap-around at 0:0.
45	Data initialized. Check for memory wrap-around at 0:0, and find the total system memory size.
46	Memory wrap-around test done. Memory size calculation complete. Ready to write patterns to test memory.
47	Pattern to be tested written in extended memory. Next, write patterns in base 640 K memory.
48	Patterns written in base memory. Find amount of memory below 1 M.
49	Amount of memory below 1 M found and verified. Find out amount of memory above 1 M.
4B	Amount of memory above 1 M found and verified. Check for soft reset and clear memory below 1 M for soft reset. (If power on, go to check point 4Eh).
4C	Memory below 1 M cleared. (Soft reset) Clear memory above 1 M.
4D	Memory above 1 M cleared. (Soft reset) Save the memory size. (Go to checkpoint 52h.)
4E	Memory test started. (Not Soft Reset) Ready to display the first 64 K memory size.
4F	Memory size display started. This will be updated during memory test. Run sequential and random memory test.
50	Memory testing/initialization below 1M complete. Ready to adjust displayed memory size for relocation/shadow.
51	Memory size display adjusted due to relocation/shadow. Memory test above 1 M to follow.
52	Memory testing/initialization above 1 M complete. Ready to save memory size information.
53	Memory size information is saved. Processor registers are saved. Ready to enter real mode.
54	Shutdown successful, processor in real mode. Ready to disable gate A20 line and disable parity/NMI.
57	Successfully disabled A20 address line and parity/NMI. Ready to adjust memory size depending on relocation/shadow.
58	Memory size adjusted for relocation/shadow. Ready to clear Hit message.
59	Hit message cleared. <wait> message displayed. Ready to start DMA and Interrupt Controller Test.</wait>
60	DMA Page Register Test passed. Ready to start DMA#1 Base Register Test.
62	DMA#1 Base Register Test passed. Ready to start DMA#2 Base Register Test.
65	DMA#2 Base Register Test passed. Ready to program DMA unit 1 and 2.
66	DMA unit 1 and 2 programming complete. Ready to initialize 8259 interrupt controller.
7F	Extended NMI sources enabling is in progress.
80	Keyboard test started. Clearing output buffer, checking for stuck key. Next, issue keyboard reserved command.
81	Keyboard reset error/stuck key found. Ready to issue keyboard controller interface test command.
82	Keyboard controller interface test complete. Ready to write command byte and initialize circular buffer.
83	Command byte written, global data initialization complete. Check for lock-key.

Table 69. Runtime Code Uncompressed in F000 Shadow RAM (continued)

Code	Description of POST Operation
84	Lock-key checking complete. Next, check for memory size mismatch with CMOS.
85	Memory size check complete. Next, display soft error and check for password or bypass Setup.
86	Password checked. Ready to do programming before Setup.
87	Programming before Setup complete. Uncompress Setup code and execute.
88	Returned from CMOS Setup program and cleared screen. Ready to do programming after Setup.
89	Programming after Setup complete. Display power-on message.
8B	First screen message displayed. <wait> message displayed. PS/2 mouse check and extended BIOS data area allocation to be done.</wait>
8C	Ready to start Setup options programming.
8D	Ready to reset hard disk controller.
8F	Hard disk controller reset complete. Floppy setup to be done next.
91	Floppy setup complete. Hard disk setup to be done next.
95	Start initialization of different buses optional ROMs from C800. (See Section 5.3 for details of different buses.)
96	Ready to do any init before C800 optional ROM control.
97	Any initialization before C800 optional ROM control is complete. Next, do optional ROM check and control.
98	Optional ROM control is complete. Next, give control to do any required processing after optional ROM returns control and enable external cache.
99	Do any initialization required after optional ROM Test is over. Ready to set up timer data area and printer base address.
9A	Return after setting timer and printer base address. Ready to set the RS-232 base address.
9B	Returned after RS-232 base address. Ready to do any initialization before coprocessor test.
9C	Required initialization before coprocessor test is complete. Ready to initialize coprocessor next.
9D	Coprocessor initialized. Ready to do any initialization after Coprocessor Test.
9E	Initialization after Coprocessor Test is complete. Ready to check extended keyboard, keyboard ID, and NumLock.
A2	Ready to display any soft errors.
A3	Soft error display complete. Ready to set keyboard typematic rate.
A4	Keyboard typematic rate set. Ready to program memory wait states.
A5	Ready to enable parity/NMI.
A7	NMI and parity enabled. Ready to do any initialization required before giving control to optional ROM at E000.
A8	Initialization before E000 ROM control complete. E000 ROM to get control next.
A9	Returned from E000 ROM control. Ready to do any initialization required after E000 optional ROM control.
AA	Initialization after E000 optional ROM control complete. Ready to display the system configuration.
AB	Put INT13 module runtime image to shadow RAM.
AC	Generate MP for multiprocessor support, if present.
AD	Put CGA INT10 module, if present, in shadow RAM.

Table 69. Runtime Code Uncompressed in F000 Shadow RAM (continued)

Code	Description of POST Operation
AE	Uncompress SMBIOS module, initialize SMBIOS code, and form the runtime SMBIOS image in shadow RAM.
B1	Ready to copy any code to specific area.
00	Copying of code to specific area complete. Ready to give control to INT19 boot loader.

5.3 Bus Initialization Checkpoints

The system BIOS gives control to the different buses at the following checkpoints to do various tasks.

Checkpoint	Description
2A	Different buses init (system, static, output devices) to start, if present.
38	Different buses init (input, IPL, general devices) to start, if present.
39	Display different buses initialization error messages.
95	Initialization of different buses optional ROMs from C800 to start.

While control is inside the different bus routines, additional checkpoints are output to port 80h as word values to identify the routines under execution. In these word-value checkpoints, the low byte of the checkpoint is the system BIOS checkpoint from which the control is passed to the different bus routines. The high byte of the checkpoint is the indication of which routine is being executed in the different buses.

The upper nibble of the high byte indicates the function being executed.

Value	Description
0	func#0, disable all devices on this bus
1	func#1, initialize static devices on this bus
2	func#2, initialize output device on this bus
3	func#3, initialize input device on this bus
4	func#4, initialize IPL device on this bus
5	func#5, initialize general device on this bus
6	func#6, report errors on this bus
7	func#7, initialize add-on ROM on all buses

The lower nibble of the high byte indicates the bus on which the routines are being executed.

Value	Description
0	Generic DIM (Device Initialization Manager)
1	Onboard system devices
2	ISA devices
3	EISA devices
4	ISA PnP devices
5	PCI devices

5.4 Speaker

A 47 Ω inductive speaker is mounted on the board. The speaker provides audible error code (beep code) information during the power-on self test (POST).

For information about	Refer to
The location of the onboard speaker	Figure 1, page 13

5.5 BIOS Beep Codes

Whenever a recoverable error occurs during power-on self test (POST), the BIOS displays an error message describing the problem. The BIOS also issues a beep code (one long tone followed by two short tones) during POST if the video configuration fails (a faulty video card or no card installed) or if an external ROM module does not properly checksum to zero.

An external ROM module (for example, a video BIOS) can also issue audible errors, usually consisting of one long tone followed by a series of short tones. For more information on the beep codes issued, check the documentation for that external device.

There are several POST routines that issue a POST terminal error and shut down the system if they fail. Before shutting down the system, the terminal-error handler issues a beep code signifying the test point error, writes the error to I/O port 80h, attempts to initialize the video and writes the error in the upper left corner of the screen (using both monochrome and color adapters).

If POST completes normally, the BIOS issues one short beep before passing control to the operating system.

Table 70. Beep Codes

Beep	Description
1	Refresh failure
2	Parity cannot be reset
3	First 64 KB memory failure
4	Timer not operational
5	Not used
6	8042 GateA20 cannot be toggled
7	Exception interrupt error
8	Display memory R/W error
9	Not used
10	CMOS Shutdown register test error
11	Invalid BIOS (e.g. POST module not found, etc.)