The **COMPLETE** **GUIDE TO** **HIGH-PERFORMANCE** **COMPUTING** **WITH YOUR** **PANTERA** **COMPUTER** # User's Guide #### © Copyright 1995 Micron Electronics, Inc. All rights reserved ZEOS shall not be held liable for technical or editorial omissions or errors made herein; nor for incidental or consequential damages resulting from furnishing, performance, or use of this material. This document contains proprietary information protected by copyright. No part of this document may be photocopied or reproduced by mechanical, electronic, or other means in any form without prior written permission of ZEOS. #### Limitation of remedies and liabilities: ZEOS' entire liability and customers' exclusive and sole remedy for damages from any cause whatsoever (including without limitation any nonperformance, misrepresentation, or breach of warranty) shall be limited to returning the products pursuant to the thirty (30) day money-back guarantee, or to repair or replace specific products or services that do not comply with the Limited Warranty offered by ZEOS. In no event will ZEOS be liable for any damages caused, in whole or in part, by customer, or for any economic loss, physical injury, lost revenues, lost profits, lost savings or other indirect, incidental, special or consequential damages incurred by any person, even if ZEOS has been advised of the possibility of such damage for claims. Some states do not allow the exclusion or limitation of incidental or consequential damages for consumer products, and some states do not allow limitations on how long an implied warranty lasts, so the above limitations or exclusions may not apply to you. #### Trademark Acknowledgments Adaptec is the trademark of Adaptec, Inc. IBM, XT, AT, and OS/2 are registered trademarks of International Business Machines Corporation. UNIX is a trademark of AT&T Laboratories. Phoenix is the trademark of Phoenix Technologies Ltd. Quadtel is the trademark of Quadtel Corp., A Phoenix Technologies Ltd. Co. Intel, 486SX, DX, DX2, DX4, and Pentium are trademarks of Intel Corporation. XENIX, MS-DOS, GW-Basic, Windows, and Microsoft are trademarks of Microsoft Corporation. All other brand and product names are trademarks or registered trademarks of their respective companies. 700-0221-00 BOA0 #### **ZEOS Computer Systems One Year Limited Warranty** All new ZEOS computer systems come with a One Year Limited Warranty which provides that the products ZEOS manufactures or assembles, other than items such as software, disks and related documentation, will remain in good working condition, free from defects in material and workmanship under normal use and service, for a period of one year from the date of shipment from ZEOS. This warranty is limited to the original purchaser and is not transferable. During this one year period, ZEOS will repair or replace, at its option, any defective product or parts at no additional charge to the customer, provided that the defective product or part is returned, shipment prepaid, to ZEOS. All replaced products and parts become the property of ZEOS. Replacement parts shall be similar new or serviceable used parts. This Limited Warranty does not extend to any products which have been damaged as a result of accident, misuse, abuse (such as incorrect voltages, power surges, improper or insufficient ventilation, failure to follow ZEOS' provided operating instructions, "acts of God" or other situations beyond the control of ZEOS), or as the result of service or modification by anyone other than ZEOS. Non-ZEOS installed parts or components are not covered, nor is damage to ZEOS provided components covered as a result of their installation. This warranty does not cover work performed by others, all warranty work must be performed by ZEOS. ZEOS provides no warranties whatsoever on software. EXCEPT AS SPECIFICALLY PROVIDED IN THIS SECTION, THERE ARE NO OTHER WARRANTIES EXPRESS OR IMPLIED INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. # **Contents** | 1. The Big Picture | 9 | |---|----| | Desktop System At A Glance | | | Tower System At A Glance | | | How to Open a Desktop Case | | | How to Open a Tower Case | | | · | | | Inside a Desktop Computer | | | Inside a Tower Computer | 19 | | 2. The Mainboard | 20 | | Mainboard Features | 20 | | PCI Local Bus 32-Bit High Speed Expansion Slots | 21 | | Secondary Cache Subsystem | | | Continuous Full-Speed Processing | 21 | | On-Board Peripherals | | | Serial Ports | | | Parallel Port | | | PCI SCSI/ Ethernet Port | | | Mainboard Diagram | | | Mainboard Connectors | | | Jumper Settings | 28 | | Mainboard Jumpers | 29 | | Mainboard Jumpers Described | 30 | | CLR1 | | | CLK1 | 31 | | Other Mainboard Features | 31 | | 3. Using SETUP | 22 | | Main Menu | | | | | | Main Menu Options | | | System Date | | | System Date Daylight Savings | | | Diskette Drive A: | | | Diskette Drive B: | | | IDE Adapters (Four Provided) | | | Video System | | | Memory Control | | | | Memory Shadow | . 40 | |------------|----------------------------------|------------| | | System Memory | . 41 | | | Extended Memory | . 41 | | | Advanced Menu | 42 | | | Integrated Peripherals | | | | PCI Devices | | | | BIOS Enable Bus Master | . 44 | | | Plug & Play O/S | . 44 | | | Reset Configuration Data | . 45 | | | Large Disk Access Mode | | | | OS Support for More Than 64MB | . 45 | | | Security Options | 46 | | | Supervisor Password is | . 46 | | | User Password is | . 46 | | | Password on boot | . 47 | | | Diskette access | | | | Fixed disk boot sector | | | | System backup reminder | | | | Virus check reminder | | | | Power Options | | | | APM (Automatic Power Management) | | | | Power Management Mode | | | | Parallel Port Activity | | | | Serial Port Activity | | | | IRQn | | | | Exit Menu Options | 50 | | <i>,</i> , | Expanding Your System | 5 1 | | 4. 1 | | | | | Adding an Expansion Board | | | | How Disk Drives Work | | | | How a Floppy Drive Works | | | | How an IDE Hard Drive Works | 55 | | | How a CD-ROM Drive Works | | | | Adding System RAM | | | | Installing SIMMs | | | | | | | | Adding System Cache Memory | | | | Installing a New CPU | 62 | | | | | | 64
64
65 | |----------------| | | | | | 35 | | 67 | | 69 | | 71 | | 73 | | | # **FCC Compliance Statement** #### For US and Canadian Users #### Warning! Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15, Subpart B of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment on and off, the user is encouraged to try to correct the interference by one or more of the following measures. - Reorient or relocate the receiving antenna. - Increase the separation between the equipment and receiver. - Connect the equipment into an outlet on a circuit different from that to which the receiver is needed. - Consult the dealer or an experienced radio/TV technician for help. The connection of a non-shielded equipment interface cable to this equipment will invalidate the FCC Certification of this device and may cause interference levels which exceed the limits established by the FCC for this equipment. This equipment is a Class B digital apparatus which complies with the Radio Interference Regulations, C.R.C., c. 1374. Cet appareil numèrique de la classe B est conformè au Règlement sur le brouillage radioèlèctrique, C.R.C., ch. 1374. # **Customer Assurance Program** #### Thirty (30) Day Money-Back Guarantee on Most Products. Any product (except for software, software disks, related documentation and consumables) purchased from ZEOS may be returned within thirty days from the date it was shipped by ZEOS for a full refund of the purchase price excluding original shipping charges. Returned products must be in as new condition, in original packing, complete with all warranty cards, manuals, cables and other materials as originally shipped; not modified or damaged. Any returned product must be shipped prepaid and insured. Any return must carry a ZEOS Return Merchandise Authorization (RMA) number, obtained from ZEOS, on the outside of each carton. Returns without RMA numbers will not be accepted. After thirty days from shipment, all sales are final and credit or refunds will not be given. # 1. The Big Picture Welcome to the ZEOS *User's Guide*! The *User's Guide* works with the *Getting Started* manual to help keep your system running trouble free, year after year. This *User's Guide* is divided into five chapters. **Chapter 1, The Big Picture** gives an overview of a typical desktop and tower system. It also shows the major components inside the computer case. **Chapter 2, The Mainboard** gives detailed information about your mainboard. **Chapter 3, Using SETUP** explains how to use the SETUP utility program to customize the built-in features of your system's BIOS (Basic Input/Output System). **Chapter 4, Expanding Your System** shows how to add components and enhancements to your system. These include a video adapter card, a controller card, an internal modem, a floppy drive, an IDE hard drive, a CD-ROM drive, memory RAM SIMMs, system cache, and a new CPU. **Chapter 5, Mainboard Specifications** includes your mainboard specifications, environmental specifications,
plus pin assignments for your serial and parallel ports. The **Handy Cheat Sheet** gives a short summary of some of the most needed or most forgotten commands. The **Glossary** gives short definitions of some common computer terms. # **Desktop System At A Glance** # **Tower System At A Glance** **Tower Front** # **How to Open a Desktop Case** #### Caution: Whenever you open the case or work inside the computer there is danger of static electric shock. These shocks can permanently damage your equipment. Always ground yourself by touching the system cabinet before touching any internal component. We strongly recommend using an antistatic wrist strap attached to cabinet ground. #### To open a desktop case: - Turn off the monitor and system unit power. Unplug the AC power cables and disconnect any other cables attached to the back of the system unit. - 2. Remove the plastic bezel from the back of the case by pulling it away from the case. - 3. Unscrew the five mounting screws at the back of the case that hold the case cover to the system unit chassis. - 4. Slide the case cover back and up. Be careful not to snag any cables or connectors inside the case. - 5. Set the case cover aside while you work on your system. - 6. When through, reattach the case cover, screws, bezel, and cables in the reverse order. The illustrations opposite show the plastic bezel, screw locations, and how to remove a desktop PC's cover. # **How to Open a Tower Case** #### Caution: Whenever you open the case or work inside the computer there is danger of static electric shock. These shocks can permanently damage your equipment. Always ground yourself by touching the system cabinet before touching any internal component. We strongly recommend using an antistatic wrist strap attached to cabinet ground. Opening a tower case is almost identical to opening a desktop case. #### To open a tower case: - Turn off the monitor and system unit power. Unplug the AC power cables and disconnect any other cables attached to the back of the system unit. - 2. Remove the plastic bezel from the rear of the case by pulling it away from the case. - 3. Unscrew the six mounting screws at the back of the case that hold the case cover to the system unit chassis. - 4. Slide the case cover back and up, taking care not to snag any cables or connectors inside. - 5. Set the case cover aside while you work on your system. - 6. Afterwards, reattach the case cover, screws, bezel, and cables in the reverse order. The illustrations opposite show the plastic bezel, screw locations, and cover motion for a tower case. # **Inside a Desktop Computer** The mainboard is the large circuit board at the bottom of the chassis. It is the heart of your system. All of the other components inside the case work for the mainboard. The power supply delivers electricity to the mainboard. The disk drives, keyboard connectors, and other parts of the system unit bring information to and from the mainboard. The figure above shows some of the most common components inside the computer. # **Inside a Tower Computer** Tower systems have the same components as desktop systems. The figure above shows the mainboard and typical components inside a Tower case. # 2. The Mainboard The mainboard is the largest circuit board in the computer. It contains the CPU (Central Processing Unit), the Level 2 cache, expansion slots, ports and connectors for other components, and the system's main memory, or RAM (Random Access Memory). #### **Mainboard Features** #### Standard Features: - Intel Pentium (P54C) 75, 90, 100, 120, or 133 MHz - Optional 256K Level 2 system cache, write-back, direct-mapped - Integrated on-board floppy drive controller - Two on-board IDE hard drive interface ports supporting up to 4 IDE devices (both PCI local bus) - EPP/ECP parallel port, software configurable - Two RS232, 16550 high-speed serial ports - RAM Configurations: 2, 4, 6, 8, 10,12, 16, 32, 64, 128, 192, 384MB, etc. (See *RAM Configurations*, Chapter 4) - 400MB maximum RAM capacity - Flash BIOS, relocatable to system RAM to boost performance - Five 16-bit ISA expansion slots - Three 32-bit PCI local bus expansion slots - Clock/calendar with on-board battery backup - APM power management #### Factory Installed Options: - AMD SCSI controller on PCI bus - AMD network controller on PCI bus - AMD combined SCSI/network controller on PCI bus #### PCI Local Bus 32-Bit High Speed Expansion Slots The three PCI local bus, high speed expansion slots move information at up to 132 MB/s. This offers a high performance, 32-bit interface to support local bus peripherals such as video cards, LAN adapters and hard disk drives. #### Secondary Cache Subsystem The secondary (Level 2) cache subsystem enhances the performance of the CPU. The on-board cache controller allows cache memory to provide an ultra high-speed, 9- or 15-nanosecond buffer between the CPU and conventional (60 or 70ns) RAM. Your system can accommodate 0K or 256K of Level 2 cache. The single cache slot (labelled Cache Socket) is located next to the CPU. #### **Continuous Full-Speed Processing** Pantera systems now run continuously at maximum speed, eliminating Turbo Mode. Because of this, the Turbo button and Turbo LED are not used on Pantera systems. #### **On-Board Peripherals** Your mainboard has all of the standard peripheral interfaces and many extras built in. This eliminates the need for many peripheral expansion cards and greatly enhances system reliability. Integrated on-board peripherals include: - Two serial ports (16550 UART) - Enhanced (EPP), Extended Capabilities (ECP), or bi-directional parallel port (assigned through SETUP) - Floppy drive controller (handles floppy drives up to 2.88Mb) - Two PCI local bus IDE hard drive controller ports, each capable of controlling two hard drives #### Factory installed options: - SCSI port (supports both SCSI-1 and -2 type devices) - Ethernet port #### **Serial Ports** Your mainboard has two RS-232C asynchronous serial ports, which are usually referred to as COM1 or (9-pin) and COM2 (25-pin) ports. The serial ports are used to attach mice, serial printers, modems, or other serial peripheral devices. Both serial ports are 16550 UART compatible for higher data transfer rates. You can install up to two additional serial ports (COM3 and COM4) simultaneously in your system. However, because MS-DOS does not manage more than two COM ports simultaneously very well, you shouldn't attempt to use more than two COM ports at the same time. Specifically, don't try to use COM1 and COM3 at the same time, or COM2 and COM4 at the same time. #### **Parallel Port** Your computer's 25-pin parallel port is often called the *printer* port because it is usually used for printers. However, new devices that use this communication line, such as SCSI and network adapters, are rapidly entering the market. Your parallel port now fully supports the new IEEE 1284 parallel port specification. IEEE 1284 specifies how to speedup data transfers between a PC and peripheral devices, as well as ways to enhance the port's capabilities. IEEE 1284 is divided into three levels, or "modes," each offering different features: Bi-directional, Enhanced Parallel Port (EPP), and Extended Capabilities Port (ECP). Your Pantera can use all these modes. Pantera also incorporates "ChiProtect" circuitry which protects your computer from damage caused during printer power-on. Following are some features of your Pantera's parallel port modes. #### Bi-directional parallel port mode: Two-way communication between your PC and your printer, controlled by the PC. Allows parallel port to receive as well as send data. #### Enhanced Parallel Port (EPP) mode: Up to 300KB/sec. Two-way communication between a PC and parallel devices. Support includes onscreen status-reporting printers. Enables daisy chaining of up to seven devices from the parallel port using pass-through connectors on the peripheral devices. #### Extended Capabilities Port (ECP) mode: Up to 2MB/sec. two-way communication between a PC and parallel devices, as well as Direct Memory Access (DMA) and a memory buffer to smooth multitasking. Can compress data. May allow LAN-like networking between two PCs with parallel ports joined by high-speed cables. #### **PCI SCSI/ Ethernet Port** The optional on-board SCSI (host adapter allows you to connect and control up to seven peripheral devices such as SCSI-compatible disk drives, tape backup units, communications devices, and CD-ROM drives. The SCSI port is a parallel, multitasking interface which supports both SCSI-1 and SCSI-2 devices. The SCSI port is configured from the system SETUP program. For SCSI system setup parameters, refer to the SCSI Control Menu in *Using SETUP*. The SCSI host adapter socket can also accept an Ethernet LAN controller chip allowing you to make direct Ethernet LAN connections for high speed local area network communications. Note: The on-board SCSI and LAN options are factory installed options only. The on-board SCSI and LAN option can only be upgraded at the time of purchase. # **Mainboard Diagram** # **Mainboard Connectors** Connectors and headers are used to attach devices to the mainboard. Attached devices can be internal (e.g., hard disk indicator lights), or external (e.g., serial and parallel ports). The most commonly used connectors are shown in the *Mainboard Diagram*. The table below provides a brief summary. **Table 1. - Mainboard Connectors** | Connector ID | Description | | |--------------|---|--| | J1 | Keyboard connector | | | P8, P9 | Main power supply header | | | P10 | PCI 3.3-Volt power supply header | | | J2 | DB9: First serial port | | | J3 | BIOS chip | | | J4 | DB25: Second serial port | | | J5 | LPT1: Parallel "printer" port header | | | J6 | Floppy disk drive header | | | J7 | Secondary IDE header (3rd & 4th IDE HDDs) | | | J8 | Legacy ISA header | | | J9 | Primary IDE header (1st & 2nd IDE HDDs) | | | J10
| 10BaseT LAN header | | | J11 | 10Base2/AUI LAN header | | | J12 | SCSI device header | | | J13 | SPEAKER output, HDD LED output | | | J14 | KBDLOCK: Keyboard Lock input | | | J15 | RESET switch header | | | | | | # **Mainboard Jumpers** CLK1: CPU Speed/Bus Speed Jumper; AMD SCSI, LAN Chips 90MHz/60MHz Bus 00 00 133MHz/66MHz Bus 75MHz/50MHz Bus 120MHz/60MHz Bus AMD LAN Chip, LAN/SCSI Chip (20MHz) AMD SCSI Chip (40MHz) **CLR1: Clear CMOS Jumper** Enable CMOS Battery OC Clear CMOS J13: Internal Speaker, Hard Disk Drive LED Speaker On J14: Power LED, Keyboard Lock J15: Reset Switch Reset O Reset # **Mainboard Jumpers Described** Jumpers are small groups of pins that can be connected or disconnected with jumper caps. To connect a jumper, carefully place the jumper cap over the pins you wish to connect, then gently press down. The mainboard uses six jumpers, allowing great system flexibility. However, most system settings are stored in battery-backed CMOS (Complimentary Metal-Oxide Semiconductor) memory. You can use the BIOS SETUP program to change settings stored in the CMOS. Other mainboards use jumpers to configure upgrade options and parameters on the mainboard. Pantera mainboards use the SETUP program and the FLASH programming utility instead, making BIOS changes and upgrades without removing the BIOS chip. #### CLR₁ The CLR1 jumper holds or resets the factory default BIOS settings stored in the CMOS (Complimentary Metal-Oxide Semiconductor) BIOS chip. You should not clear the CMOS memory unless it becomes corrupted and cannot be reprogrammed with the SETUP program, which also can reset the factory default BIOS settings. To clear the CMOS memory, **turn off system power**, then momentarily place the jumper in the CLEAR position, then return the jumper to the normal position (Enable CMOS battery). Your system will not operate with the jumper in the CLEAR position, so be sure to return the CLR1 jumper to the normal position. #### CLK1 The CLK1 jumper sets the speed of the system clock, and enables the appropriate AMD LAN or SCSI chip (optional). It will be set correctly to work with your system, so don't change this jumper unless you change CPUs. | Pins Jumpered | CPU Clock Speed (MHz) | Bus Clock Speed (MHz) | | |------------------|--|-----------------------|--| | 1-2 | 100 | 66 | | | 1-2, 3-4, 5-6 | 100 | 50 | | | 5-6 | 90 | 60 | | | 1-2, 3-4 | 133 | 66 | | | 1-2, 5-6 | 75 | 50 | | | 3-4, 5-6 | 120 | 60 | | | 7-8 | Enables AMD LAN or SCSI/LAN chip (20MHz) | | | | 7-8 not jumpered | Enables AMD SCSI chip (40MHz) | | | See the diagram, Mainboard Jumpers, for the location of these jumpers. #### **Other Mainboard Features** #### **CPU Pipelining** Increases data throughput by allowing the CPU to start the next machine cycle before it finishes processing the current one. (continued next page) #### **Burst Cache Module (Synchronous)** During a single machine cycle, a bursting CPU generates a beginning address and a quantity of bytes for the Level 2 cache to expect. Then the CPU transfers that quantity of bytes as a single package, without needing to generate any intermediate addresses. Speed: 9 nanoseconds. #### **Asynchronous Cache Module** An asynchronous cache can generate wait states that tell the CPU to delay transferring information until valid data is ready to be transferred to or from the Level 2 cache. Speed: 15 nanoseconds. # 3. Using SETUP The SETUP utility program allows you to customize the power-on initialization parameters of your computer's BIOS (Basic Input/Output System). You may need to use the SETUP program if you add components to your system. To run the BIOS SETUP program, press **F2** during system boot. Once inside SETUP, you can reach different sections by pressing the right/left arrow keys on your keyboard. Inside each section, you can go into a subsection (indicated by a right-pointing triangle on the left side of the screen) by moving to it with the up/down arrow keys, then pressing the Enter key. Setup's five sections are <u>Main</u>, <u>Advanced</u>, <u>Security</u>, <u>Power</u>, and <u>Exit</u>. Each section contains topics you can view or adjust to suit your system's needs. SETUP allows you to customize various system parameters, although our technicians optimize them for your system as shipped. If you inadvertently change BIOS values that cause your system to malfunction, you can simply reload the original factory default settings from ROM by entering SETUP, then pressing the **F9** key. Otherwise, you can load the most recently saved settings from battery backed CMOS by pressing **F10**. Within SETUP, pressing **F1** toggles the General Help window, while the right-hand panel describes the function of the currently highlighted topic. To change your BIOS settings, first use the arrow keys to highlight the desired topic, then press the space bar or the <+> or <->key on the numeric keypad to rotate through the available options. Note: only an item whose label is surrounded by [square brackets] may be changed; values not in brackets can only be viewed. Once you've finished customizing your BIOS settings, press the **Esc** key a couple times to reach the <u>Exit</u> menu. There you can decide if you really want to keep your changes, if you'd prefer to return to the factory defaults, or if you want to go back to using your previously saved values. In any case, remember you can always change the BIOS settings again next time you boot up. #### Main Menu Your system's BIOS settings were configured at the factory to maximize performance with the options you ordered. Generally, you need to run SETUP only if you install a new or different hard drive, if the on-board battery fails, or if you otherwise add to or change your basic hardware. SETUP's Main Menu allows you to view and configure several basic parameters, including system time, date, and daylight savings, Diskette A and B, system memory (RAM) timing, memory shadowing, boot sequence options, and video system type. The Main Menu lets you configure four PCI local bus IDE devices: - IDE Adapter 0 Master (Drive letter, capacity in megabytes) - IDE Adapter 0 Slave (Drive letter, capacity in megabytes) - IDE Adapter 1 Master (Drive letter, capacity in megabytes) - IDE Adapter 1 Slave (Drive letter, capacity in megabytes) Each of the four IDE Adapter subsections lets you view and customize the settings for a separate PCI local bus IDE device attached directly to you mainboard. The subsections are described on the following pages. SETUP's Main Menu also contains subsections for Memory Control, Memory Shadow, and Boot Sequence. Finally, System Memory and Extended Memory are displayed. At the very bottom is a chart showing how to navigate and change values in SETUP. # **Main Menu Options** #### **System Time** Sets the real-time clock, using a 24-hour format. During the power-up sequence, the real time is read and saved in memory for use by the operating system. After boot up, the operating system updates the system time. #### **System Date** Sets the real-time date for month, day, and year. During the power-up sequence, this information is read and saved in memory for use by the operating system to determine the current date. After completing the power-up sequence, the operating system updates the current date. #### **Daylight Savings** Adjusts system clock for daylight savings time. Default: Enabled. #### **Diskette Drive A:** Specifies the size and capacity of the floppy-disk drive installed as drive A. Options: Not Installed, 360K, 720K, 1.2MB, 1.44MB, and 2.88MB. Default: 1.44MB. #### **Diskette Drive B:** Specifies the size and capacity of floppy-disk drive B. Default: Not Installed. (more settings, next page) #### **IDE Adapters (Four Provided)** There are four IDE Adapter subsections: IDE Adapter 0 Master, IDE Adapter 0 Slave, IDE Adapter 1 Master, IDE Adapter 1 Slave. Each has a submenu which allows you to view and change configurations of an IDE device attached to your on-board IDE Hard Drive headers, J9 and J7. The IDE Adapter subsections list the IDE devices that are currently installed. Your Primary hard drive (J9) is listed as *IDE Adapter 0 Master*. You can attach a second hard drive to the same cable as *IDE Adapter 0 Slave*, then two more devices on the Secondary connector (J7) as *IDE Adapter 1 Master*, or *IDE Adapter 1 Slave*. The following page describes the contents of each IDE Adapter subsection. Note: If you attach two drives to a single drive cable, it doesn't matter whether or not the Master drive is connected to the end or the middle, as long as one drive is configured as Master and the other drive is configured as Slave. Also, before you add a separate hard drive, see its manual for Master/Slave configuration instructions. #### **Autotype Fixed Disk** This utility automatically detects and configures your IDE Adapter, if the device conforms to ANSI (American National Standards Institute) specifications. ZEOS drives are configured at the factory, so to add a hard drive you just run Autotype. If Autotype is successful, it will identify your hard drive type and display the drive parameters. Otherwise, you can select one of the established drive type numbers from the *Type* list, or select Type USER to set Cylinders, Heads, Sectors/Track and Write Precomp settings yourself, using information supplied by the device's manufacturer. Note: Don't alter drive parameters unless you change or add a hard drive. #### **Multi-Sector Transfer** Determines the number of sectors per block for multiple sector transfers. Options are Disabled, 2, 4, 8, 16, 32, 64, and 128 sectors. Older hard drives (and even some newer drives) will not work properly if the number of sectors is set too high. Default: Disabled. Note: Before adding a new hard drive or formatting one from Zeos, first disable Multi-Sector Transfers, then format the drive, then run FDISK. Later, you can enable Multi-Sector Transfers
again. #### Write Precomp Write Precompensation. In older hard drives, this setting tells the drive to apply a stronger magnetic field to inner tracks of the disk to *compensate* for magnetic drift. Your hard disk manufacturer's documentation should tell you if your drive requires this setting. Default: None (Disabled). #### **Prefetch (Master drives only)** Controls a hard drive feature that fetches and catches disk data bordering the last spot accessed. This "prefetched" data is can then be reached quickly by the CPU. Settings: Disabled, Enabled. Default: Enabled. #### LBA Mode Control Enables or disables Logical Block Addressing, which allows you to use IDE hard drives that store over 528 MB. Options: Disabled, Enabled. Default: Disabled. #### 32-Bit I/O Reports 32-bit access status. Always Enabled. (more settings, next page) #### **Transfer Mode** Reports disk data transfer mode, determined by the Autotype utility. Settings: Standard, Fast PIO 1, Fast PIO 2, Fast PIO 3, Fast PIO 4. Default: Standard (determined by Autotype). ## **Video System** Sets the video type. Options: *Monochrome*, *CGA* 80 x 25 (80 column Color Graphics), or *EGA/VGA* (Enhanced/Video Graphics Adapter). Default: EGA/VGA. ## **Memory Control** The Memory Control subsection lets you view and change DRAM (system RAM) Timing, enable/disable the L2 (Level 2) External Cache, and determine which shadowed upper memory regions (in addition to system and video) are allowed to be cached in a special superfast (9-15ns) 256K SIMM. ### **DRAM Speed** Sets the upper limit for DRAM (system RAM) speed to 60ns or 70ns (nanoseconds). DRAM Speed must be set to match the slowest SIMM in your memory slots. Default: 70ns. ### **Memory Interleave (System DRAM)** Reports the current DRAM interleave configuration determined automatically by the BIOS. Options: No Interleave, or the following Combinations: - 1) Bank 0 and 1, - 2) Bank 0 and 3, - 3) Bank 1 and 2, - 4) Bank 2 and 3, - 5) Banks 0, 1 and 2, 3 - 6) Banks 0, 3 and 1, 2. Memory interleaving can increase the apparent speed of memory access. By using separate memory banks for odd and even addresses, the next byte of memory can be used while the current byte is being refreshed. Pairs of identical SIMMs must be properly installed to make this feature available. #### General Restrictions: - SIMMs must be 64-bits wide - SIMMs must be the same type (single- or double-sided) Restrictions for double-sided SIMMs: - Combination 2 will not work unless only Banks 0 and 3 are filled - Combination 3 will not work unless only Banks 1 and 2 are filled #### **External Cache** Enables or disables the L2 (Level 2) External Cache. If the Level 2 cache SIMM is present, it offers a 15-nanosecond buffer between your CPU and regular (50-70ns) system RAM. Normally L2 cache speeds up your system, but because some software has problems with L2 caching, you may (rarely) need to disable the External Cache. Default: Enabled. (more settings, next page) ### **Cache Memory Regions** Allows you to choose which specific shadowed BIOS memory regions (in addition to System code and Video code) will be cached. Regions are identified by hexadecimal (base 16) addresses. Default: All specific regions Disabled. ## **Memory Shadow** BIOS shadowing copies data from portions of the computer's slower ROM (Read-Only Memory) chips into much faster DRAM (system RAM) chips in system memory. This data can then be read more quickly by the CPU, so system performance improves. The Memory Shadow subsection lets you make certain regions of your upper memory (other than that reserved for basic system and video) available for BIOS shadowing. #### **System Shadow** Not adjustable. System Shadow is always Enabled. #### Video Shadow Not adjustable. Video Shadow is always Enabled. ### **Shadow Memory Regions** Allows additional specific ROM memory regions (other than System and Video) to be shadowed in upper RAM memory. When enabled, this ROM region will be copied to shadow RAM when you boot up. Regions are identified by hexadecimal (Base 16) addresses. Default: All specific regions Disabled. ### **Boot Sequence** Configures the following bootup procedures and reports: - -Boot Sequence: A then C (default), C then A, C only. - -Setup Prompt: Disabled or Enabled (default). - -POST Errors: Disabled or Enabled (default). - -Floppy check: Disabled or Enabled (default). - -Summary screen: Disabled or Enabled (default). - -Numlock: Auto (default), On, Off. - -Key Click: Disabled (default) or Enabled. - -Keyboard auto-repeat rate: 2, 6, 10, 13.3, 18.5, 21.8, 26.7, or 30/second. Default: 30/second. - -Keyboard auto-repeat delay: 1/4, 1/2 (default), 3/4, 1 second. ## **System Memory** Reports system memory amount. Not alterable. ## **Extended Memory** Reports extended memory amount. Not alterable. ## **Advanced Menu** #### Warning! Setting these items incorrectly could cause your system to malfunction. Never needlessly change from the defaults. The Advanced Menu reports or controls the status of Integrated Peripherals, PCI Devices, Advanced Chipset Control, Plug & Play O/S, Reset Configuration Data, and Large Disk Access Mode. ## **Integrated Peripherals** Configures your serial and parallel ports, as well as your on-board floppy disk controller, and your on-board IDE controller. The following list describes each of these parameters. #### 1st COM Port When 1st COM Port is set to *Auto*, the system will automatically set the interrupt and IRQ for that port. Otherwise this option allows you to choose (from a list) the I/O address and IRQ of the 9-pin serial port. Default: Auto. #### 2nd COM Port When 2nd COM Port is set to *Auto*, the system will automatically set the interrupt and IRQ for that port. Otherwise this option allows you to choose (from a list) the I/O address and IRQ of the 25-pin serial port. Default: Auto. #### **LPT Port** Sets the parallel port designation. This allows you to specify the parallel port address and IRQ, which otherwise are factory set. Default: Auto. #### LPT Mode Allows you to set the parallel port communication mode to match the capabilities of your parallel port device. Settings: Output Only, Bidirectional or ECP. Default: Output Only. #### **Diskette Controller** Enables or disables the on-board floppy diskette controller. Default: Enabled. ### **Local Bus IDE Adapter** Configures the on-board Local Bus IDE controller, which controls up to four PCI local bus devices. Settings: Disabled, Primary, Secondary, Both. Default: Both. (more settings, next page) ### **PCI Devices** The PCI (Peripheral Component Interconnect) Devices submenu allows you to enable or disable the integrated SCSI and LAN options. #### **Enable On-board SCSI** Enables/disables the built-in SCSI port, if present. Default: Disabled. #### On-board Ethernet Enables/disables the on-board AMD Ethernet controller, if present. Default: Disabled. ### **BIOS Enable Bus Master** Determines whether the BIOS will enable bus master operation by setting the Bus Master bit in the PCI device configuration space. Normally, the software for the device will enable bus master operation, but some nonconforming software may depend on the BIOS to perform this function. Options: Disabled, Enabled. Default: Disabled. ## Plug & Play O/S Enables/disables peripheral add-on features for computers with Plug & Play operating systems. Options: No, Yes. Default: No. ## **Reset Configuration Data** Clears system configuration settings. Options: No, Yes. Default: No. ## **Large Disk Access Mode** Lets you set your system to expect a large DOS hard disk, or some Other type of hard disk, such as expected by UNIX or Novell Netware. Default: DOS. ## OS Support for More Than 64MB When enabled, interrupt 15 function 88h only reports 16MB of RAM if MORE than 64MB is installed. This is used by OS/2 and Windows NT to recognize more than 64MB. These operating systems use Int. 15 function E001h to size the memory installed. These OS's require Int. 15 function 88h to behave as described above when more than 64MB of RAM is installed. Options: Disabled, Enabled. Default: Disabled. (more settings, next page) ## **Security Options** The Security Menu allows you to password-protect system access, a way of safeguarding information. When passwords are enabled, users must type the proper password to access the protected part of the system. - Note: 1. It's easy to forget a password, so we strongly recommend writing down your passwords and storing them in a secure place. - 2. If you type the User password on entering SETUP, you cannot change the Supervisor Password or Diskette Access settings. ### Warning! If you forget the password, your system will not operate. You will have to completely clear the CMOS memory and reenter your entire system configuration. Write down your password and store it in a safe place. The following security items are available: - Set Supervisor Password - Set User Password - Password on Boot - Diskette Access - Fixed disk boot sector - System Backup Reminder - Virus Check Reminder ## **Supervisor Password is** Allows you to enter a system supervisor password. This password controls access to all features of your system. ### **User Password is** Accessible only after Supervisor Password is enabled, this allows you to enter a system user password. You can't use the User Password to alter the Supervisor Password in SETUP. ### **Password on boot** When enabled, the system asks you for a password on boot. The system will boot only after the correct supervisor or user password is entered. Default: Disabled. ### **Diskette access** Active only when a Supervisor password is enabled, this specifies which level of password (Supervisor or User) is required on bootup to use the floppy disk drives. This can prevent unauthorized transfer of data. Default: *Supervisor*. Note: All diskette drive access can be denied (including system diskettes) by 1) setting a Supervisor password, 2) setting Password on Boot to
Disabled, then 3) setting Diskette Access to Supervisor. ### Fixed disk boot sector When enabled, write protects the boot sector on your hard drive to protect against viruses. Default: Disabled. ## System backup reminder When enabled, this periodically displays a boot reminder message to back up your system. Options: Daily, Weekly, Monthly, Disabled. Default: Disabled. ### Virus check reminder When enabled, this periodically displays a boot reminder message to scan for viruses. Options: Daily, Weekly, Monthly, Disabled. Default: Disabled. (more settings, next page) ## **Power Options** The Power menu lets you tell your system to enter a low-power *Standby* mode and an even lower-power *Suspend* mode when it is idle for a certain time. Standby and Suspend reduce your system's energy consumption while allowing you to resume work within moments. You also control what events reactivate your system and prevent Standby or Suspend. ## **APM (Automatic Power Management)** Enables or disables the BIOS's APM functions, which let application programs manage power consumption. Options: Enabled, Disabled. Default: Enabled. ## **Power Management Mode** Configures power management for your CPU, your fixed disk drives, and your monitor. Settings: Disabled, Customize (default), Maximum, Medium, and Minimum. This allows you to opt for one of three preset configurations, or customize the Power Management settings yourself, or disable power savings altogether. The list below describes each setting: - <u>Standby Timeout</u> controls how long (8 seconds to 20 hours, or Disabled) your system must be idle before it enters Standby mode. Standby saves power while awakening very quickly. - <u>Suspend Timeout</u> controls how long (8 seconds to 20 hours, or Disabled) your system waits in Standby mode before entering the more passive Suspend mode. Suspend saves a lot of energy, but takes a little longer to resume activity. - <u>Standby CPU Speed</u> dictates the percentage of time the CPU will run during Standby. Options: Maximum, 50%, 25%, 12%, 6%, 3%, 8MHz, and Slowest. Default: 25%. - <u>Fixed Disk Timeout</u> controls how long (1-16 minutes, or Disabled) an idle system waits before stopping the hard disk motor. Available only in Customize. - <u>CRT</u> puts the monitor in low-power mode when the system enters Standby. Options: Disabled, Enabled. Default: Disabled. ### **Preset Power Savings Configurations** | Feature | Max. Savings | Med. Savings | Min. Savings | | |--------------------|--------------|--------------|--------------|--| | Standby Timeout | 8 sec | 10 min | 5 hr | | | Suspend Timeout | 8 sec | 30 min | 5 hr | | | Standby CPU Speed | l 8 MHz | 3 percent | 50 percent | | | Fixed Disk Timeout | 1 min | 8 min | 16 min | | | CRT Standby | Enabled | Disabled | Disabled | | ## **Parallel Port Activity** Enables or disables parallel port activity (e.g. from a printer) from resetting the system Standby timer or awakening the system from low power mode. Options: Disabled, Enabled. Default: Enabled. ## **Serial Port Activity** Enables or disables serial port activity (e.g. moving a mouse) from resetting the system Standby timer or awakening the system from low power mode. Options: Disabled, Enabled. Default: Enabled. ### **IRQn** Enables or disables activity at a specific IRQn (n = 0 through 15) from resetting the system Standby timer or awakening the system from low power mode. This makes it possible for fax/modem and other peripheral device activity to awaken your computer from Standby or Suspend. Options: Disabled, Enabled. Default: IRQ 1-15 Enabled, IRQ 0 Disabled. (more settings, next page) ## **Exit Menu Options** Offers Exit and Save options for the SETUP program. Options: Save Changes & Exit, Discard Changes & Exit, Get Default Values, Load Previous Values, Save Changes. Changes to the SETUP's BIOS settings are stored in CMOS (Complimentary Metal-Oxide Semiconductor) memory, a non-volatile memory area powered by the on-board battery. # 4. Expanding Your System ## **Adding an Expansion Board** The five ISA and three PCI expansion slots on your mainboard are designed to accept a wide variety of add-on cards (many available from ZEOS). Scanners, tape backup units, video capture devices, and many other devices come on expansion cards, which communicate with the CPU via standard expansion slots. Often, adding these components is as easy as opening the case, slipping the new card into an empty slot, then connecting the external component (if there is one) to the card. ### To add an expansion board: - 1. Turn off the monitor and system unit power, then unplug the AC power cords from the wall outlet. - 2. Open the system unit case (see *How to Open a Desktop Case*, earlier). - 3. Find an empty expansion slot or, if you are replacing an expansion card already in your system (such as when upgrading your video card), locate the old card. - 4. Unscrew the mounting screw and remove the blank bracket by sliding it up. If you are removing an old expansion card, carefully lift it straight up (sometimes you have to wiggle it a little). - 5. Set any jumpers or switches on the new card. See the card's documentation for the correct jumper settings. - 6. Slide the new card into the slot. Press down firmly, so the edge connector slides completely into the slot. - 7. Tighten the mounting screw. (more steps, next page) - 8. Connect any internal cables to the expansion card. - 9. Close the computer case, and turn on the power. Many expansion cards require you to run diagnostic or installation software before the new board will work properly. Your expansion card's installation manual should have detailed instructions. ## **How Disk Drives Work** There are three main types of disks for storing files - floppy, hard, and compact disks. Floppy disks are small, relatively slow, portable disks. Most people use floppy disks to transfer files or install new programs onto their hard drives. Floppy disks fit into the floppy disk drives mounted in your system unit. Although there are some combination drives, most floppy disk drives are designed to hold only one size of disk. Hard, or fixed disks, are permanently mounted inside your system unit case. They are very fast, hold a lot of files, and are not removable without disassembling your system. Compact disks fit into CD-ROM drives. Compact disks can store very large amounts of information. Floppy, hard, and CD-ROM disk drives all fit into the drive bays in your system unit. This chapter shows how some of the most common drives connect to the mainboard. Most drives have two connections - a power connection and a data connection. For detailed installation and configuration information, always check the disk drive's documentation. ## **How a Floppy Drive Works** Floppy drives have two cables--a ribbon-type data cable between the floppy drive and its mainboard header, and a power cable that leads to the power supply. The data cable joins the back of the floppy drive with the floppy drive header J6 on the mainboard. Data ribbon cables often have two connectors, allowing up to two floppy drives to share the same ribbon cable. The data cable also has a colored stripe to help you orient the connector. Always attach a cable connector so the colored stripe is nearest Pin 1 of the mainboard connector. Pin 1 is often labelled with a small triangle or filled in corner. ## **How an IDE Hard Drive Works** IDE (Integrated Drive Electronics) hard drives are the most common hard drives and are the most likely to be installed on your system. IDE devices have most of the electronics or "smarts" built into the drive, rather than installed on a separate controller card or on the motherboard. IDE hard drives have two main connections – a ribbon cable called the data cable and a power connection to the power supply. The ribbon cable plugs into the back of the hard drive, then joins it to one of the mainboard's two IDE headers. Drives 1 & 2 use J9 (primary); drives 3 & 4 use J7 (secondary). Always attach the ribbon cable so the colored stripe is nearest Pin 1 on the mainboard header Most drives also have configuration jumpers at the back of the drive for setting drive identification and resistors. See your hard drive user's guide for complete information. ## **How a CD-ROM Drive Works** CD-ROM drives read information from compact discs, or CDs. The "ROM" in CD-ROM stands for Read Only Memory. Compact discs are *read-only*—you can read information from them, but you can't add new information to them as you can with a floppy disk or hard disk. Despite their limitations, CDs have some distinct advantages. CDs can store large amounts of information—one compact disk can store as much information as 500 floppy disks. With the right software, you can even listen to music on your CD-ROM drive. There are several types of CD-ROM drives. Most have three primary connectors: a power connector, a data cable connector, and an audio connector. The power connector is the same kind of DC power connector used by floppy drives and hard disk drives. It accepts DC power from the computer's internal power supply. It doesn't matter which power connector goes to which drive--they're interchangeable. The data cable is a flat ribbon cable that connects the drive with some type of controller. Your IDE CD-ROM drive connects to the IDE header on the mainboard (J7 or J9) or (with certain models) to an IDE controller card inserted into one of the ISA expansion slots. Some drives can use a CD-ROM header mounted on a sound card. Most CD-ROM drives also have an audio connector for headphones or computer speakers. If your system has a sound card and speakers installed, the CD-ROM drive's audio connector probably can be connected to the sound card. For detailed information about your CD-ROM drive, check the manufacturer's documentation. ## **Adding System RAM** System memory is often called RAM or Random Access Memory. RAM is the "thinking space" available to your
applications. Usually, the more system RAM you have, the faster your system will run. Many software applications simply run much faster and more efficiently when more RAM is available. You add RAM by inserting Single In-line Memory Modules (SIMMs) into SIMM sockets on the mainboard. Your computer's mainboard will hold up to six SIMMs of 32-bit DRAM. Slots must be filled in sequence from 0A to 2B. You must have identical pairs of SIMMs in each bank, but different banks can support various capacities and speeds. The mainboard will support up to 400MB of RAM, with on-board 16MB. Note: SIMMS MUST ALWAYS BE INSTALLED IN SEQUENCE FROM BANK 0A TO BANK 2B, AND WITHIN THE SAME BANK, THEY MUST BE THE SAME SPEEDS AND CAPACITIES. *RAM Configurations | Memory Size | SIMMs Used | Memory Scheme | |-------------|------------------|------------------| | 2MB | two 1MB | Page | | 4MB | two 2MB | Page/Interleaved | | 8MB | two 4MB | Page/Interleaved | | 10MB | two 4MB, two 1MB | Page/Interleaved | | 12MB | six 2MB | Page/Interleaved | | 16MB | four 4MB | Page/Interleaved | | 24MB | six 4MB | Page/Interleaved | | 32MB | four 8MB | Page/Interleaved | | 64MB | four 16MB | Page/Interleaved | | 128MB | four 32MB | Page/Interleaved | | 256MB | four 64MB | Page/Interleaved | | 384MB | six 64MB | Page/Interleaved | ^{*}Add 8MB or 16MB if system contains on-board RAM. Note: This is just a small sample of the many possible RAM configurations. ## **Installing SIMMs** When installing SIMMs, use 70ns or faster memory chips for maximum system performance. Different speed SIMMs may be mixed, but only if you put them different banks. In addition, always set the CPU/DRAM Speed option in SETUP to match the slowest SIMM. Note that with SIMMs, larger numbers mean that more time is used to access information (a 70ns SIMM is slower than a 60ns SIMM). For best results, use SIMMs from the same manufacturer. #### Caution: Static electric shocks can permanently damage your equipment. Always ground yourself by touching the metal part of the computer case before beginning the following procedure. We strongly recommend using an antistatic wrist strap attached to the case ground. #### To Install SIMMs: - 1. Remove system cover (see *How to Open a Desktop Case*, earlier). - 2. Remove any SIMMs you are replacing with new SIMMs by gently pulling the metal socket clips away from the SIMM to release the SIMM from the socket. Hold them out while you are tilting the SIMM away from the metal clips. Carefully lift the SIMM up and out. #### Caution: Never use force to remove the module out of the socket. Failure to properly release the retainer clips may break the socket, causing expensive damage which is not covered by your warranty. - 3. Grasping a new SIMM by the edge, remove it from the antistatic bag. - 4. Insert the bottom edge into the socket slot. Press down firmly on the SIMM while maintaining the proper angle of insertion. (more steps, next page) #### Installing SIMMs (continued) - 5. Ensure the SIMM seats correctly. If not, remove and repeat Step 4. - 6. Gently push the top edge toward the retainer clips until the clips snap into place. - 7. Reinstall system cover. After completing the installation, your ROM BIOS will determine the amount of memory installed; however you may need to change the CPU/DRAM Speed option in your system SETUP program. Refer to *Using SETUP* earlier for detailed instructions. ## **Adding System Cache Memory** Secondary cache memory can speed up memory intensive applications and greatly enhance your CPU's performance. You add Level 2 cache memory by adding a 64-bit Single In-line Memory Module (SIMM) into the secondary system Cache Socket on the mainboard. This optional SIMM can be synchronous (9ns) or asynchronous (15ns). #### Caution: You must use a **3-Volt** SIMM when you add cache memory. If you aren't sure, contact ZEOS Technical Support before purchasing or installing a cache SIMM. Note: System cache SIMMs are not the same as RAM memory SIMMs. Do not try to install cache SIMMs in your RAM memory sockets, or RAM SIMMs in your cache SIMM socket. Although installing secondary cache memory is easy and straightforward, a few simple precautions will ease the installation. Before you begin, make note of your system's current SETUP parameters. You can access the SETUP screen by pressing **F2** at boot. Copy the SETUP parameters to a piece of paper. Also, all SIMMs are extremely sensitive to static electricity. Be sure to use an antistatic wrist band and ground yourself by touching the computer case before you touch the mainboard or handle any chips. To install secondary cache memory: - 1. Turn off the system power and unplug the AC power cord. Remove system cover (see *Opening the Case*, earlier). - 2. Locate the secondary system "Cache Socket." The figure opposite shows the socket's location on the mainboard. - 3. If you are upgrading your system cache memory, remove the SIMM you are replacing by gently pulling it out of the socket. 4. Grasping a new SIMM by the edge, remove it from the antistatic bag, find Pin 1 on the SIMM, align it with the socket's Pin 1, then press it into the socket. #### **Caution:** Static RAM is extremely sensitive to static electricity. These shocks can permanently damage your equipment. Use an antistatic wrist strap attached to cabinet ground. Be sure to ground yourself by touching the system cabinet before beginning this procedure. - 5. Reinstall system cover, plug in AC power, and turn on the computer as you normally would. - 6. Make sure the External Cache option on the Memory Control Menu of the Advanced System Setup Menu is Enabled. Also, check your system SETUP to be sure it hasn't changed. If any settings have changed, reenter the correct values, then reboot. ## **Installing a New CPU** #### Caution: Static electricity can permanently destroy your CPU. Always ground yourself by touching the system cabinet before beginning the following procedure. We strongly recommend using an antistatic wrist strap attached to cabinet ground. #### To install a new CPU: - 1. Open the case and locate the CPU socket on the mainboard. If you need help see *How to Open a Desktop Case* and *Mainboard Diagram*, earlier. - 2. Lift up the ZIF (Zero Insertion Force) socket arm to the open position. This will loosen the pressure on the pins of the old CPU chip. Carefully lift the old CPU and heat sink out of the socket. - 3. Important: You must align the new CPU over the socket on the board *exactly like the old CPU*. Make absolutely sure the Pin 1 notch on the CPU chip aligns with Pin 1 on the ZIF socket. - 4. Place the new CPU into the socket and press gently. Be careful not to bend any pins on the CPU. Once the CPU is firmly seated in the socket, carefully lower the ZIF arm back down to the closed position. - 5. Attach the heat sink to the new CPU. If your new CPU is exactly the same size as your old CPU, you can reuse your old heat sink. If your new CPU is not the same size as your old one, you must use the heat sink supplied with your new CPU. If your heat sink is a peel and stick type, peel off the adhesive layer and stick the heat sink onto the new CPU. If your heat sink uses a retaining clip, place the heat sink on the chip, then slide the retaining clip over the heat sink until it snaps onto the sides of the CPU. (more steps, next page) - 6. Set the CLK1 jumper to match the speed of your new CPU. If you need help with this jumper, see *Mainboard Jumpers Diagram*, earlier. - 7. Close case and boot as you normally would. # 5. Mainboard Specifications | CPU | Intel Pentium (P54C) | | |------------------------------|--|--| | Power consumption | Approx. 25Watts (varies with CPU, memory) | | | Clock speeds | 75, 90, 100, 120, 133, MHz | | | Chipset | VLSI SuperCore 590 | | | ISA bus speed | 7.5 MHz for 90MHz system
8.25 MHz for 100 MHz systems | | | I/O transfer rate | Up to 33MB/s | | | PCI local bus speed | Up to 132MB/s (100Mhz)
Up to 120MB/s (90Mhz) | | | Memory capacity (min.) | 2MB via SIMMs; 8 or 16MB via on-board RAM | | | Memory capacity (max.) | 400MB (with on-board 16MB) | | | Memory types | DRAM: 1, 2, 4, 16, 32MB x36 or x32 SIMMs | | | Memory speeds | 60, 70ns | | | Memory configurations | Various (See RAM Configurations, Chapter 4) | | | Data path | 8, 16, 32, 64-bits | | | Expansion slots (8) | Five 16-bit ISA
Three 32-bit PCI local bus | | | Secondary cache mapping | Direct-mapped | | | Secondary cache write policy | Write-back L1, Write-thru L2 | | | Secondary cache capacity | 0KB (standard), 256KB | | | Secondary cache type | One 256KB SIMM | | | Secondary cache speed | 9ns Synchronous, or 15ns Asynchronous | | ## **Mainboard Environmental Specifications** | Operating Temperature | 0°C to 40°C | |-----------------------|---------------------------| | Storage Temperature | -20°C to 60°C | | Operating Humidity | Up to 100% non-condensing | ## 9-Pin Serial Port (J2) Pin Assignment | Header Pin
Number | DB9 Connector
Pin Number | Signal | |----------------------|-----------------------------|--------------------------| | 1 | 1 | DCD, Data Carrier Detect | | 2 | 6 | DSR, Data Set Ready | | 3 | 2 | RXD, Receive Data | | 4 | 7 | RTS, Request to Send | | 5 | 3 | TXD, Transmit Data | | 6 | 8 | CTS, Clear To Send | | 7 | 4 | DTR, Data Terminal Ready | | 8 | 9 | RI, Ring Indicator | | 9 | 5 | GND, Ground | ## 25-Pin Serial Port (J3) Pin Assignment | Header Pin
Number | DB25 Connector Pin Number | Signal | |----------------------|---------------------------|--------------------------| | | | | | 1 | 8 | DCD, Data Carrier Detect | | 2 | 3 | RXD, Receive Data | | 3 | 2 | TXD, Transmit Data | | 4 | 20 | DTR, Data Terminal Ready | | 5 | 7 | GND, Ground | | 6 | 6 | DSR, Data Set Ready | | 7 | 4 | RTS, Request to Send | | 8 | 5 | CTS, Clear to Send | | 9 | 22 | RI, Ring Indicator | ## 9-Pin Serial Port (J2) Pin Assignment ## 25-Pin Serial Port (J3)
Pin Assignment # Parallel Port (J4) Pin Assignment | Header Pin
Number | Parallel Port
Connector Pin
Number | Signal | |----------------------|--|--------------------| | 1 | 1 | STB, Strobe | | 3 | 2 | PD0, Data Bit 0 | | 5 | 3 | PD1, Data Bit 1 | | 7 | 4 | PD2, Data Bit 2 | | 9 | 5 | PD3, Data Bit 3 | | 11 | 6 | PD4, Data Bit 4 | | 13 | 7 | PD5, Data Bit 5 | | 15 | 8 | PD6, Data Bit 6 | | 17 | 9 | PD7, Data Bit 7 | | 19 | 10 | ACK, Acknowledge | | 21 | 11 | Busy, Busy | | 23 | 12 | PE, Paper Empty | | 25 | 13 | SLCT, Select | | 2 | 14 | AFD, Auto Feed | | 4 | 15 | ERR, Error | | 6 | 16 | INIT, Initialize | | 8 | 17 | SLIN, Select Input | | 10 | 18 | GND, Ground | | 12 | 19 | GND, Ground | | 14 | 20 | GND, Ground | | 16 | 21 | GND, Ground | | 18 | 22 | GND, Ground | | 20 | 23 | GND, Ground | | 22 | 24 | GND, Ground | | 24 | 25 | GND, Ground | | | | | ## Parallel Port (J4) Pin Assignment # **Handy Cheat Sheet** Here are some of the most often needed or forgotten notes. | CTRL-ALT-DEL Warm Reboot | |---| | Reset button, or | | Power button | | F2 during power up | | CTRL-BREAK, or | | CTRL-C Pause or Break an application or batch file | | DOS Commands | | | | COPY [filename] [drive:][path][newfilename] | | FORMAT [drive:] erases and formats a disk | | DIR [drive:][path] lists the files in a certain drive and directory | | DEL [filename] deletes a file | | MD[newdirectory] makes a new directory | | RD[directoryname] removes and erases an empty, old directory | | RENAME [oldfilename] [newfilename] renames a file | | CHKDSK [drive:] displays a status report for a disk | | CD[path] changes to a different directory | | CLS | | Common DOS file extensions | | .BAK backup file | | .BAT batch file | | .COM command program file | | .EXE executable program file | | .SYS system file | | .INI | | | | .PIF Windows program information file | | README filestext files with special instructions | # **Handy Cheat Sheet** #### **Windows Shortcuts** | Ctrl-C | copy to clipboard | |---------|----------------------------------| | Ctrl-V | paste or copy from the clipboard | | Ctrl-X | delete and copy to clipboard | | Alt-Tab | toggle between open applications | | Alt-Esc | jump to next open application | **Wildcards** - wildcards are special characters that can represent any other valid numbers, letters, or symbols in a file name. The asterisk represents any number of other characters. For example: *.BAK would represent any file with the extension BAK. GONOW.* would represent all files named GONOW with any extension. The question mark represents one single character. For example: GONOW.?XE would represent any file named GONOW with an extension ending in XE. ?ONOW.EX? would represent any five character filename ending in ONOW with EX as the first two characters of its extension. # **Glossary** This glossary provides general definitions of key terms. For an expanded list look in standard reference books on computers. **Address** - A number or expression representing the physical location of a device or a piece of data. **APM** - Automatic Power Management. A set of features designed to minimize power consumption. **Application Program** - A word processor, spreadsheet, desktop publisher or other program that allows interaction with the user. **AUTOEXEC.BAT** File - An MS-DOS batch file containing commands which execute automatically when you turn on your computer. **Batch File** - A file containing several commands that execute in sequence as a group, or batch. MS-DOS batch files must have a filename extension of .BAT. **Boot** - Short for Bootstrap. Transfer of a disk operating system program from storage on floppy disk or hard disk drive to computer's working memory. **Boot Disk** - A disk with an operating system installed which loads the system on power up. **Character** - Anything that can print in a single space on the page or the screen. Includes numbers, letters, punctuation marks, and graphic symbols. Command Processor - The part of an operating system that processes commands entered by you. The command processor in MS-DOS is contained in the COMMAND.COM file. CPU - Central Processing Unit. The piece of hardware which interprets instructions, performs the tasks you indicate, keeps track of stored data, and controls all input and output operations. **Crash** - A malfunction in the computer hardware or software, usually causing loss of data. **Cursor** - The arrow, vertical I-beam or other screen object that shows where you can click to select something onscreen. See Insertion point. **Diagnostics** - The tests and procedures the computer performs to check its internal circuitry and set up its configuration. See POST. **DIP Switches** - Small switches on a piece of hardware such as a CPU, a printer, or an option card. DIP switch settings control various functions and provide a system with information about itself. DIP stands for Dual In-Line Package. **Directory** - A list of the files stored on a disk or a part of a disk. Often depicted onscreen by a small folder. **Disk Drive** - The physical device which allows the computer to read from and write to a disk. A floppy disk drive has a disk slot into which you insert floppy disks. A hard disk drive is permanently fixed inside the system unit. **DMA** - Direct Memory Access. A DMA controller transfers data directly from a hard drive, LAN adapter or other device to/from system RAM, freeing the CPU for more important work. **DOS** - Disk Operating System. A computer program which continuously runs and mediates between the computer user and the Application Program, and allows access to disk data by disk filenames. The Disk Operating System controls the computer's input and output functions. See Operating System. **ECP** - Extended Capabilities Port. Features an asynchronous, byte-wide, bi-directional data flow. Can distinguish between commands and data. **EPP** - Enhanced Parallel Port. Features an asynchronous, byte-wide, bi-directional channel, plus separate address and data cycles over eight data lines. **File** - A group of related pieces of information called records, or entries, stored together on disk. Text files consist of words and sentences. Program files consist of codes and are used by computers to interpret and carry out instructions. **Floppy disk** - a flat piece of flexible plastic coated with magnetic material and used to store data permanently. **Format** - To prepare a new disk (or erase an old one) so it can receive information. Formatting a disk divides it into tracks and sectors which create addressable locations on it. **Hard Disk Drive** - Commonly called rigid disk drives, or fixed disk drives. Unlike floppy disks, hard disks are fixed in place inside the system unit. They can process data faster and store many more files than floppy disks. **Hardware** - Any physical component of a computer system, such as a monitor, printer, keyboard, or CPU. **IDE** - Integrated Drive Electronics. An IDE drive has the controller electronics built into the drive itself and is connected directly to the mainboard or to an adapter card. # **Glossary** **IEEE** - Institute of Electrical and Electronic Engineers. Engineers, scientists and students in electronics and related disciplines. Sets technical standards for computers and communications. Insertion Point - A blinking vertical marker which shows where you can type words or numbers. Sometimes called Text Cursor. See Cursor. **Jumper** - A small electrical connector that alters some of the computer's functions. Short (makes a connection) or Non-Short (no connection). **Kilobyte** (**KB**) - A unit used to measure storage space (in a computer's memory or on a disk). One kilobyte equals 1024 bytes. **LED** - Light Emitting Diode. A diode that illuminates when electricity passes through it, like the indicator lights on the front panel of the computer. **Local Bus** - A set of addresses, data, and control signals that interface directly with the host CPU. **Mainboard** - also *Motherboard*. A printed circuit board into which other circuit boards can be plugged. Usually, it contains the CPU, connectors for memory (SIMMs), secondary cache, adapter sockets and expansion slots for add-on devices. **Memory** - Computer chips that make data quickly available to the CPU. They can store data permanently (ROM) or temporarily (RAM). **MHz** - 1 Megahertz = one million (*Mega*) cycles per second (*Hertz*). **Operating System** - A body of programs, such as MS-DOS, that coordinate the activities of a computer. It determines how programs run and supervises all input and output. **PCI** - Peripheral Component Interconnect. PCI is an industry standard for local bus peripheral expansion. **Parallel Port** - also *Printer Port*. A 25-pin Input/Output connector usually used for printers. **Peripheral** - A device (such as, a printer or a modem) connected to a computer that depends on the computer for its operation. **Port** - A physical input/output socket on a computer where you can connect a peripheral. **POST -** Power-On Self Test. An initial diagnostic test a computer performs to check its hardware. **RAM** - also *DRAM*. Random Access Memory. Small chips or modules that provide the CPU rapid access to data. Software programs and files reside in RAM while being used. RAM is called *volatile* memory because it "evaporates" when you turn off the power. **Read** - To copy data from one area to another. For example, when you open a text file stored on disk, the computer reads the data from the disk and displays it on the screen. **Reset** - To reload a computer's operating system so you can retry a task or begin using a different operating system. Resetting clears RAM. **ROM** - Read Only Memory. A portion of memory that can only be read and cannot be used for temporary storage. ROM retains its contents even when you turn off
the power. **SETUP** - This refers (usually) to the program that is used to load the CMOS data base with input from the user. SETUP sets the date, time, and configuration of disk drives installed on the system. **Software** - The programs that enable your computer to perform the tasks and functions you indicate. Application programs are software. **SRAM** - Static RAM. Memory chips that do not require refresh circuitry, as do conventional RAM chips. SRAMs operate in the 10-30 nanosecond range, which is faster than RAM chips. SRAM is often used as a buffer between fast CPUs and RAM. **Subdirectory** - A directory within another directory. **System Disk** - A disk that contains the operating system. A Boot Disk. Write - To store data on a disk. Write-Protect - To prevent a floppy disk from being overwritten by placing a write-protect tab over the notch on the side of the floppy disk (5.25") or setting the write-protect switch (3.5"). When a floppy disk is write-protected, you cannot erase, change, or record over its contents. # Index | Symbols | Diskette Access 47 Diskette Drive A: in SETUP 35 | |---|--| | 32-Bit I/O 37 | Diskette Drive B: in SETUP 35
DRAM Timing 38 | | Α | E | | Adding an Expansion Board 51 Adding System Cache Memory 60 Adding System RAM 57 Advanced Menu 42 APM 48 Asynchronous Cache Module 32 Autotype Fixed Disk 36 | Enable On-board SCSI 44 Expansion Board Adding 51 Expansion Slots Location 26 External (Level 2) Cache 39 | | BIOS Enable Bus Master 44 Boot Sequence 41 Burst Cache Module 32 | Fixed Disk Boot Sector 47 Floppy Disk Controller 43 Floppy Drive 54 H | | С | Hard Drive 55 | | Cache Memory Adding 60 Regions 40 CD-ROM Drive 56 Com Port A: in SETUP 42 Com Port B: in SETUP 42 CPU Inserting into ZIF Socket 62 Installing 62 Location 26 CPU Pipelining 31 Customer Assurance Program 8 | IDE Adapters 36 IDE Controller 43 Installing a New CPU 62 Installing SIMMs 58 Integrated Peripherals 42 J Jumpers CLK1 31 CLR1 30 Settings 28 | | Daylight Savings 35 Desktop System Diagram 10 How to Open 14 Internal Diagram 18 Disk Drives 53 | L Large Disk Access Mode 45 LBA Mode Control 37 LPT Mode 43 LPT Port 43 | # Index Adding 57 | IVI | 3 | |---|--| | Mainboard Diagram 26 Environmental Specifications 64 Jumper Functions 30 Jumpers Diagram 29 Specifications 64 | SCSI Port Features 25 Secondary Cache Subsystem 21 Security 46 Serial Port Features 23 SETUP 33 Shadow Momenty Pagions 40 | | Memory Control 38 Shadow 40 Memory Interleave 39 Memory Shadow 40 Mode, in SETUP 43 Multi-Sector Transfer 37 | Shadow Memory Regions 40 SIMMs Adding 58 Standby mode 48 Suspend mode 48 System Backup Reminder 47 Date 35 Shadow 40 Time 35 System Memory | | On-board Ethernet 44 OS Support for More Than 64MB 45 | Adding 57 | | Parallel Port Features 24 in SETUP 43 Password 46 Password on Boot 47 | Tower System Diagram 12 How to Open 16 Internal Diagram 19 Transfer Mode 38 | | PCI Devices 44 Local Bus 21 SCSI/ Ethernet Port 25 | U User Password 46 | | Pinouts, Serial and Parallel 65
Plug & Play O/S 44
Power Savings 48
Prefetch 37 | V Video Shadow 40 Virus Check Reminder 47 | | RAM | W
Write Precomp 37 | | 11/1 | | 700-0221-00 BOA0