RU430HX Motherboard Technical Product Specification

Order Number 281810-002 May 1996

Revision History

Revision	Revision Revision History	
-001	Preliminary release of the RU430HX Technical Product Specification.	05/96
-002	Second release of the RU430HX Technical Product Specification.	05/96

This product specification applies only to standard RU430HX LPX motherboards with BIOS identifier 1.00.01.RU.

Changes to this specification will be published in the RU430HX Motherboard Specification Update before being incorporated into a revision of this document.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel retains the right to make changes to specifications and product descriptions at any time, without notice.

The RU430HX motherboard may contain design defects or errors known as errata. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

[†] Third-party brands and names are the property of their respective owners.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

Intel Corporation P.O. Box 7641 Mt. Prospect, IL 60056-7641

or call in North America 1-800-879-4683, Europe 44-0-1793-431-155, France 44-0-1793-421-777,

Germany 44-0-1793-421-333, Japan (fax only) 81-0-120-478-832, other Countries 708-296-9333

Copyright © 1996, Intel Corporation

1 Board Description

1.1	Overview7					
1.2	Motherboard Manufacturing Options7					
1.3	Form Factor9					
1.4	Micropr	rocessor	9			
	1.4.1	Microprocessor Upgrade	10			
1.5	Memory	у	10			
	1.5.1	System Memory	10			
	1.5.2	Second Level Cache	10			
1.6	Chipset	t	11			
	1.6.1	82439HX Xcelerated Controller (TXC)	11			
	1.6.2	PCI ISA/IDE Xcelerator (PIIX3)	11			
	1.6.3	IDE Support	12			
1.7	I/O Cor	ntroller	12			
	1.7.1	Floppy Controller	12			
	1.7.2	Keyboard and Mouse Interface	13			
	1.7.3	Real-time clock, CMOS RAM and battery	13			
	1.7.4	IrDA (infra-red) support	13			
	1.7.5	Parallel port	14			
1.8	Graphic	cs Subsystem	14			
	1.8.1	S3 Trio 64 Graphics	14			
	1.8.2	S3 V+ Graphics	14			
	1.8.3	S3 ViRGE Graphics	15			
	1.8.4	Supported Video Resolutions	16			
	1.8.5	VESA Feature Connector	17			
	1.8.6	Graphics Drivers and Utilities	17			
1.9	Audio S	Subsystem	17			
	1.9.1	Audio Drivers	18			
1.10) Basebo	bard Connectors	18			
	1.10.1	VESA Feature Connector - J1G1	19			
	1.10.2	Wave Table Upgrade Connector - J9G1	19			
	1.10.3	CD Audio - J9H1	19			

		1.10.4	MIDI/Audio Upgrade J9G2	20
		1.10.5	Telephony Connector - J9F1	20
		1.10.6	Floppy Drive Connector - J9E2	21
		1.10.7	External 3.3 V Power Connector - J9E1	21
		1.10.8	Primary Power Connector J9C1	22
		1.10.9	Soff-Off Power Supply Connector J8B1	22
		1.10.10	IDE Connectors - J8C2, J8C1	22
		1.10.11	PCI/ISA Riser Connector - J6E2	23
		1.10.12	Front Panel Connector - J2A1	25
		1.10.13	Front Panel Connector - J2A2	26
		1.10.14	Power Supply Connectors	26
		1.10.15	Front panel Connectors	27
		1.10.16	Audio Connectors	29
		1.10.17	Back Panel Connectors	30
	1.11	Jumper	Settings	33
		1.11.1	CPU Configuration (J1F1-C, D)	34
		1.11.2	Password clear (J1F1-A, Pins 1, 2, and 3)	34
		1.11.3	Clear CMOS (J1F1-A, Pins 4, 5, and 6)	34
		1.11.4	CMOS Setup Access (J1F1-B, Pins 1, 2, and 3)	34
		1.11.5	CPU Voltage (J1F1-B, Pins 4, 5, and 6)	34
	1.12	Reliabili	ty	35
	1.13	Environ	mental	35
	1.14	Power C	Consumption	36
	1.15	Regulat	ory Compliance	36
2	Воа	rd Resc	ources	
	2.1	Memory	/ Map	37
	2.2	I/O Map		37
		2.2.1	Port 79 Definition	39
	2.3	Soft-Off	Control	39
	2.4	PCI Cor	nfiguration Space Map	39
	2.5	DMA Ch	annels	40
	2.6	Interrup	ts	40
		•		

3	Mot	herboai	rd BIOS and Setup Utility	
	3.1	Introduc	ction	41
	3.2	BIOS FI	lash Memory Organization	41
	3.3	BIOS U	pgrades	41
	3.4	PCI IDE	E Support	42
	3.5	PCI Aut	o-configuration	
	3.6	ISA Plu	g and Play	42
	3.7	Advance	ed Power Management	43
	3.8	Langua	ge Support	43
	3.9	Boot Op	ptions	43
	3.10	Flash L	OGO Area	44
	3.11	Setup E	nable Jumper	44
	3.12	BIOS S	etup Utility	44
		3.12.1	Overview of the Setup Menu Screens	44
		3.12.2	Main BIOS Setup Screen	45
		3.12.3	Floppy Options Subscreen	
		3.12.4	IDE Device Configuration Subscreen	47
		3.12.5	Boot Options Subscreen	
		3.12.6	Advanced Screen	49
		3.12.7	Peripheral Configuration Subscreen	50
		3.12.8	Advanced Chipset Configuration Subscreen	51
		3.12.9	Power Management Configuration Subscreen	52
		3.12.10	Plug and Play Configuration Subscreen	53
		3.12.11	Security Screen	54
		3.12.12	Security Screen Options	55
		3.12.13	Exit Screen	55
4	Erro	or Mess	ages and Beep Codes	
	4.1	BIOS B	eep Codes	57
	4.2	PCI Cor	nfiguration Error Messages strt	57
	4.3	BIOS E	rror Messages	58

1.1 Overview

The RU430HX motherboard will accept Pentium[®] processors operating at 75 MHz, 90 MHz, 100 MHz, 120 MHz, 133 MHz, 150 MHz, 166 MHz, and 200 MHz. There is an option of having 256 KB or 512 KB of Pipeline Burst SRAM soldered onto the board. The memory subsystem supports up to 128 MB of DRAM using either EDO or fast page SIMMs. A type 7 Pentium OverDrive[®] socket provides an upgrade path to future OverDrive processors.

The Intel 82430HX PCIset contains an integrated PCI Bus Mastering IDE controller with two high performance IDE interfaces for up to four IDE devices (such as hard drives, CD-ROM readers, and so forth). The National PC87306B Super I/O controller integrates the standard PC I/O functions: floppy interface, two FIFO serial ports, one EPP/ECP capable parallel port, a real-time clock, keyboard controller, and support for an IrDA compatible infrared interface. To provide for the increasing number of multimedia applications, a Yamaha OPL3-SA audio CODEC is integrated onto the motherboard. The OPL3-SA provides 16-bit stereo, Sound Blaster Pro[†] and Windows[†] Sound System compatibility and full-duplex capabilities to meet the demands of interactive multimedia applications. An optional Yamaha OPL4-ML audio CODEC provides FM and Wave Table synthesis for high quality audio applications.

PCI and ISA expansion slots are supported by a connector on the motherboard designed to accept a riser card.

A full set of software drivers and utilities are available to allow advanced operating systems such as Windows 95 to take full advantage of the hardware capabilities. Features such as bus mastering IDE, Windows 95-ready Plug 'N' Play, Advanced Power Management (APM) with application restart, software-controlled power supply shutdown, and bi-directional audio are all provided by software available for the RU430HX.

1.2 Motherboard Manufacturing Options

- Yamaha OPL3-SA or OPL4-ML wave table audio
- 256 KB or 512 KB pipelined burst SRAM cache soldered to the board
- Support for universal serial bus (USB)
- S3 Trio 64 or S3 V+ or VirGE Graphics, including EDO video memory upgrade

Figure 1. Board Features

- A Socket 7 Pentium Processor socket
- B 82430HX (TXC)
- C Option of 256K or 512K PB SRAM
- D S3 V+ or ViRGE PCI graphics controller
- E Configuration jumper blocks
- F VESA† Feature connector
- G EDO graphics memory
- H VGA connector
- I Graphics memory upgrade
- J Parallel port connector
- K Riser card configuration header
- L Serial port B header
- M -Serial port B or USB connector

- N National PC87306B I/O controller
- O Serial port A connector
- P PS/2 Mouse port
- Q PS/2 Keyboard port
- R Mic In (3.5mm, stereo)
- S Line Out (3.5mm, stereo)
- T CD ROM Audio connector
- U Audio I/O connector
- V Wave table upgrade connector
- W Telephony audio connector
- X Optional Yamaha OPL3 FM Synthesizer
- Y Floppy drive connector
- Z 3.3V Power connector

- AA Optional Yamaha OPL4 Wave Table upgrade
- BB Primary Power connector
- CC Flash Recovery jumper
- DD Soft-off power supply control
- EE Primary IDE connector
- FF Secondary IDE connector
- GG SIMM sockets
- HH 82371SB PCI ISA/IDE Accelerator (PIIX3)
- II Optional Piezo transducer
- JJ PCI/ISA expansion connector
- KK Battery for real-time clock
- LL Front panel connector

1.3 Form Factor

The motherboard is designed to fit into a standard LPX form factor chassis. Figure 2 illustrates the mechanical form factor for the RU430HX. The RU430HX LPX form factor adheres to the standard LPX guidelines in that the outer dimensions are 9 inches x 8.6 inches. Location of the I/O connectors, riser slot, and mounting holes are in strict compliance with the LPX specification.

Figure 2. Board Dimensions

1.4 Microprocessor

The motherboard is designed to operate with 3.3 volt Pentium Processors. An onboard linear voltage regulator circuit provides the required 3.3 volts from the 5.0 volt tap of the power supply. An on-board jumper enables use of VRE specified processors. Pentium processors that run internally at 75, 90, 100, 120, 133, 150, 166, and 200 MHz are supported.

The Pentium processor maintains full backward compatibility with the 8086, 80286, i386[™] and Intel486[™] processors. It supports both read and write burst mode bus cycles, and includes separate 8 KB on-chip code and data caches that employ a write-back policy. The Pentium processor

includes an advanced numeric coprocessor that increases the speed of floating point operations, while maintaining backward compatibility with Intel486 DX math coprocessor and complying to ANSI/IEEE standard 754-1985.

1.4.1 Microprocessor Upgrade

The board contains a 321-pin Socket 7 ZIF processor socket. Socket 7 supports a processor upgrade path that includes higher performance Pentium OverDrive processors than can be supported with socket 5.

1.5 Memory

1.5.1 System Memory

The motherboard provides four 72-pin SIMM sockets that make it possible to install up to 128 MB of RAM. The sockets support 1M x 32 (4 MB), 2M x 32 (8 MB), 4M x 32 (16 MB), and 8M x 32 (32 MB) single- or double-sided modules. Minimum memory size is 8 MB and maximum memory size, using four 8M x 32 SIMM modules, is 128 MB. Memory timing requires 70 ns fast page devices or, for optimum performance, 60 ns EDO DRAM. If the maximum external CPU clock speed is 60 MHz or slower, 70 ns EDO DRAM may be used. Both parity and non-parity memory are supported as well as ECC.

The four sockets are arranged in two banks of two sockets each. The sockets are designated Bank 0 and Bank 1. Each bank provides a 64/72-bit wide data path. Both SIMMs in a bank must be of the same memory size and type, although the different types of memory may differ between banks. It is even possible to have 70 ns Fast Page DRAM in one bank and 60 ns EDO DRAM in the other, in which case each bank is independently optimized for maximum performance. Bank 0 only, Bank 1 only, or both of the banks may be populated. There are no jumper settings required for the memory size or type, that is automatically detected by the system BIOS. Use only tin lead SIMMs when adding DRAM.

1.5.1.1 EDO DRAM

Extended Data Out (or Hyper Page) DRAM is designed to improve the DRAM read performance. EDO DRAM holds the memory data valid until the next CAS# falling edge, unlike standard fast page mode DRAM which tri-states the memory data when CAS# negates to precharge for the next cycle. With EDO, the CAS# precharge overlaps the data valid time, allowing CAS# to negate earlier while still satisfying the memory data valid window time.

1.5.2 Second Level Cache

The Xcelerated Controller device supports a second level cache that uses the high performance synchronous pipeline burst static RAM (PBSRAM). PBSRAM provides performance similar to expensive synchronous Burst SRAMs for only a slight cost premium over slower performing asynchronous SRAMs.

The RU430HX motherboard supports options for 256 or 512 KB cache soldered down. Either configuration can provide cache for the first 64 MB of system memory. For ease of use the cache size is automatically detected and configured by the system BIOS for optimal performance.

1.6 Chipset

•

The Intel 82430HX PCIset consists of the 82439HX Xcelerated Controller (TXC) and one 82371SB PCI ISA/IDE Xcelerator (PIIX3) bridge chip.

1.6.1 82439HX Xcelerated Controller (TXC)

The 82439HX provides all control signals necessary to drive a second level cache and the DRAM array, including multiplexed address signals. The TXC also controls system access to memory and generates snoop controls to maintain cache coherency. The TXC comes in a 324-pin BGA package and includes the following features:

- CPU interface control
- Integrated L2 write-back cache controller
 - Pipeline burst SRAM
 - 256 or 512 KB direct-mapped
 - Integrated DRAM controller
 - 64 bit path to memory
 - Support for EDO and fast page DRAM
 - 8 MB to 128 MB main memory
 - Parity and non-parity support
- Fully synchronous PCI bus interface
 - 25/30/33 MHz
 - PCI to DRAM > 100 Mbytes/sec
 - Up to 4 PCI masters in addition to the PIIX3 and IDE.

1.6.2 PCI ISA/IDE Xcelerator (PIIX3)

The PIIX3 provides the interface between the PCI and ISA buses and integrates a dual channel fast IDE interface capable of supporting up to 4 devices. The PIIX3 integrates seven DMA channels, one 16-bit timer/counter, two eight-channel interrupt controllers, PCI-to-AT interrupt mapping circuitry, NMI logic, ISA refresh address generation, and PCI/ISA bus arbitration circuitry together onto the same device. The PIIX3 comes in a 208-pin QFP package and includes the following features.

- Interface between the PCI and ISA buses
- Universal Serial Bus controller
 - Host/hub controller
- Integrated fast IDE interface
 - Support for up to four devices
 - PIO Mode 4 transfers up to 16 MB/sec
 - Integrated 8 x 32-bit buffer for bus master PCI IDE burst transfers
 - Bus master mode
- PCI 2.1 compliant
- Enhanced fast DMA controller
- Interrupt controller and steering
- Counters/timers
- SMI interrupt logic and timer with fast on/off mode

1.6.3 IDE Support

The motherboard provides two independent high performance bus-mastering PCI IDE interfaces capable of supporting PIO Mode 3 and Mode 4 devices. The system BIOS supports Logical Block Addressing (LBA) and Extended Cylinder Sector Head (ECHS) translation modes as well as ATAPI (e.g. CD-ROM) devices on both IDE interfaces. Detection of IDE device transfer rate and translation mode capability is automatically determined by the system BIOS.

Normally, programmed I/O operations require a substantial amount of CPU bandwidth. In true multi-tasking operating systems like Windows 95, the CPU bandwidth freed up by using bus mastering IDE can be used to complete other tasks while disk transfers are occurring. When used in conjunction with the appropriate driver for the Windows 95 environment, the IDE interface can operate as a PCI bus master capable of supporting PIO Mode 4 devices with transfer rates of up to 16 MB/sec.

1.7 I/O Controller

Control for the integrated serial ports, parallel port, floppy drive, RTC and keyboard controller is incorporated into a single component, the National Semiconductor PC87306B. This component provides:

- Two NS16C550-compatible UARTs with send/receive 16 byte FIFO
- Support for an IrDA compliant Infra Red interface
- Multi-mode bi-directional parallel port
 - Standard mode; IBM and Centronics compatible
 - Enhanced Parallel Port (EPP) with BIOS/Driver support
 - High Speed mode; Extended Capabilities Port (ECP) compatible
- Industry standard floppy controller with 16 byte data FIFO (2.88 MB floppy support)
- Integrated real-time clock accurate within +/- 13 minutes/year at 25° C and +5 V when the system is continuously powered on
- Integrated 8042 compatible keyboard controller

By default, the 87306B interfaces are automatically configured by the BIOS during boot-up. You can also manually configure the interfaces with the BIOS Setup utility. Chapter 3 describes the BIOS Setup utility.

1.7.1 Floppy Controller

The I/O controller is software compatible with the DP8473 and 82077 floppy disk controllers. You can configure the floppy interface for 360 KB or 1.2 MB 5¼ inch media or for 720 KB, 1.2 MB, 1.44 MB, or 2.88 MB 3½ inch media with the BIOS setup utility. By default, the Floppy A interface is configured for 1.44 MB and Floppy B is disabled. A Setup option makes it possible to prevent a user from being able to write to a floppy drive. A driver is required for configuring the floppy interface for 1.2 MB 3.5-inch (3-mode floppy) operation.

1.7.2 Keyboard and Mouse Interface

PS/2[†] keyboard and mouse connectors are located on the back panel side of the baseboard. The 5V lines to these connectors are protected with a PolySwitch[†] circuit that acts much like a self-healing fuse, re-establishing the connection after an over-current condition is removed. While this device eliminates the possibility of having to replace a fuse, you should still be sure to turn off the system power before installing or removing a keyboard or mouse.

The integrated 8042 microcontroller contains the AMI Megakey keyboard and mouse controller code that, besides providing traditional keyboard and mouse control functions, supports Power-On/Reset (POR) password protection. The POR password can be defined by the user via the Setup program. The keyboard controller also provides for the following "hot key" sequences:

- <CTRL><ALT>: System software reset. This sequence performs a software reset of the system by jumping to the beginning of the BIOS code and running the POST operation.
- <CTRL><ALT><+> and <CTRL><ALT><->: Turbo mode selection. <CTRL><ALT><-> sets the system for de-turbo mode, emulating an 25 MHz AT, and <CTRL><ALT><+> sets the system for turbo mode. Changing the Turbo mode may be prohibited by an operating system, or when the CPU is in Protected mode or virtual x86 mode under DOS.
- <CTRL><ALT><defined in setup>: A power down hot-key sequence takes advantage of the SMM features of the Pentium Processor to greatly reduce the system's power consumption while maintaining the responsiveness necessary to service external interrupts. A security hot-key sequence provides password protection to the system.

1.7.3 Real-time clock, CMOS RAM and battery

The integrated real-time clock (RTC) is DS1287 and MC146818 compatible and provides a time of day clock, 100-year calendar with alarm features. The RTC can be set via the BIOS SETUP program. The RTC also supports 242-byte battery-backed CMOS RAM in two banks which is reserved for BIOS use. The CMOS RAM can be set to specific values or cleared to the system default values using the BIOS SETUP program. Also, the CMOS RAM values can be cleared to the system defaults by using a configuration jumper on the board.

An external coin-cell style battery provides power to the RTC and CMOS memory. The battery has an estimated lifetime of three years if the system is not plugged into the wall socket. When the system is plugged in, power is supplied from the power supply's +5 V standby current to extend the life of the battery.

1.7.4 IrDA (infra-red) support

A 5-pin interface on the front panel I/O connector is provided to allow connection to a Hewlett Packard HSDSL-1000 compatible Infra-red (IrDA) transmitter/receiver. For Consumer Ir, a Sharp GP1U58X (second sourced by Litton), Panasonic PNA4602M, ICX IRR538 and ICX model IRR638 or equivalent receiver module is required. Both modules can be connected/supported, however only one can be active at a time. Once the module is connected to the front panel I/O header, Serial port 2 can be re-directed to either the IrDA or Consumer Ir module. Once configured for IrDA, the user can transfer files to or from portable devices such as laptops, PDA's and printers using application software such as LapLink. The IrDA specification provides for data transfers at 115 Kbps from a distance of 1 meter. The Consumer Ir is (system) receive only and can be used to control telephony functions and multimedia operation such as volume control, CD track change etc.

1.7.5 Parallel port

A 25-pin D-Sub header is provided on the back panel for a multi-mode bi-directional parallel port. The Parallel port can be configured in the BIOS setup as output only compatible mode, bidirectional mode, ECP or EPP modes. The highly flexible parallel port can also be assigned to I/O addresses 278H, 378H, or 3BCH and IRQ's 5 or 7. Furthermore, a routable DMA scheme allows Plug 'N' Play operating systems such as Windows 95 to route either DMA channels 1 or 3 to the parallel port for ECP mode. EPP BIOS support must be provided by a device driver or TSR.

1.8 Graphics Subsystem

The RU430HX motherboard is available with a factory option of an S3 Trio 64, S3 V+, or S3 ViRGE SVGA graphics. The RU430HX motherboard supports S3 media channel for HW MPEG.

1.8.1 S3 Trio 64 Graphics

The RU430HX motherboard is available with the factory option of an S3 Trio64 SVGA graphics controller with 1 MB of graphics DRAM. The graphics DRAM can be upgraded to 2 MB by installing two 256 KB x 16, 60 ns SOJ DRAM devices in the provided sockets.

The Trio64 incorporates a 64-bit graphics engine with a 24-bit RAMDAC, dual programmable clock generators, and a high performance accelerator core in a single device. The on-chip RAMDAC/clock synthesizer is capable of output pixel data rates of 135 MHz, providing non-interlaced screen resolutions of up to 1280 x 1024 x 256 colors at 75 Hz (with 2 MB of DRAM). Hardware acceleration for graphics functions such as BitBLTs with ROPs, 2-point line draws, trapezoidal and polygon fills, clipping and cursor support provide high performance operation under Windows and other GUI environments. In addition, a fast linear addressing scheme based upon DCI reduces software overhead by mapping the display memory into the CPU upper memory address space and permitting direct CPU access to the display memory.

1.8.2 S3 V+ Graphics

The RU430HX motherboard is available with a factory option of an S3 Trio64 V+ SVGA graphics controller with 1 MB of graphics DRAM upgradeable to 2 MB. The graphics DRAM can be upgraded to 2 MB by installing two 256 KB x 16, 60 ns SOJ DRAM devices in the provided sockets. The Trio64 V+ has a 64-bit graphics engine and incorporates the S3[†] Streams Processor that enables the device to convert YUV formatted video data to RGB and provides acceleration for scaling the video display without compromising picture quality or frame rate. The on-chip RAMDAC/clock synthesizer is capable of output pixel data rates of 135 MHz providing non-interlaced screen resolutions of up to 1280x1024x256 colors at 75 Hz with 2 MB of DRAM. Hardware acceleration for graphics functions such as BitBLTs with ROPs, 2-point line draws, trapezoidal and polygon fills, clipping and cursor support provide high performance operation

under Windows and other GUI environments. In addition, a fast linear addressing scheme based upon DCI reduces software overhead by mapping the display memory into the CPU's upper memory address space and permitting direct CPU access to the display memory.

1.8.3 S3 ViRGE Graphics

The RU430HX motherboard is available with a factory option of an S3 VIRGE SVGA graphics controller with 2 MB of 50 ns EDO SOJ DRAM. The S3 VIRGE has a high performance 64-bit 2D/3D graphics engine and incorporates the S3 Streams Processor that enables the device to convert YUV formatted video data to RGB and provides acceleration for scaling the video display without compromising picture quality or frame rate. The on-chip RAMDAC/clock synthesizer is capable of output pixel data rates of 135 MHz providing non-interlaced screen resolutions of up to 1280x1024x256 colors at 75 Hz. The 64-bit S3d Engine incorporates the key Windows and other GUI accelerator functions of BitBLT, line draw and polygon fill. 3D features include flat shading, Gouraud shading and texture mapping support. Advanced texture mapping features include perspective correction, bi-linear and tri-linear filtering, MIP-mapping, and Z-buffering. These features provide the most realistic user experience for interactive 3D applications. In addition, a fast linear addressing scheme based upon DCI reduces software overhead by mapping the display memory into the CPU's upper memory address space and permitting direct CPU access to the display memory.

1.8.4 Supported Video Resolutions

Resolution	S3 Trio 64 1 MB DRAM	S3 Trio 64 2 MB DRAM	Refresh rate (Hz)	S3 V+ 1 MB DRAM	S3 V+ 2 MB DRAM	Refresh rate (Hz)	S3 ViRGE 2 MB DRAM	Refresh rate (Hz)
640x480x4	Х	Х	60	Х	Х	60	Х	60
640x480x8	Х	Х	60,72,75,85	Х	Х	60,72,75,85	Х	60,72,75,85
640x480x15	Х	Х	60,72,75	Х	Х	60,72,75	Х	60,72,75
640x480x16	Х	Х	60,72,75	Х	Х	60,72,75	Х	60,72,75
640x480x24				X*	X*	60, 72, 75	X*	60,72,75
640x480x32		Х	60,72,75		Х	60,72,75	Х	60,72,75
800x600x8	Х	Х	56,60,72, 75,85	Х	Х	56,60,72, 75,85	Х	56,60,72,75, 85
800x600x15	Х	Х	60,72,75	Х	Х	60,72,75	Х	60,72,75
800x600x16	Х	Х	60,72,75	Х	Х	60,72,75	Х	60,72,75
800x600x24				X*	X*	60, 72,75	X*	60,72,75
800x600x32		Х	60,72,75		Х	60,72,75	Х	60,72,75
1024x768x8	Х	Х	43(IL),60, 70,75,85	Х	Х	43(IL),60, 70,75,85	Х	43(IL),60, 70,75,85
1024x768x15		Х	43(IL),60, 70,75		Х	43(IL),60, 70,75	Х	43(IL),60, 70,75
1024x768x16		Х	43(IL),60, 70,75		Х	43(IL),60, 70,75	Х	43(IL),60, 70,75
1024x768x24					X*	43(IL),60, 70,75	X*	43(IL),60, 70,75
1152x864x8	Х	Х	60	Х	Х	60	Х	60
1280x1024x4	X	X	43(IL), 45(IL),60, 72,75	Х*	X*	43(IL), 45(IL),60, 72,75	X*	45(IL),60, 72,75
1280x1024x8		Х	45(IL),60, 72,75		X	45(IL),60, 72,75	Х	45(IL),60, 72,75
1600x1200x8		Х	48.5(IL)		Х	48.5(IL)	Х	48.5(IL)

Table 1. Supported Video Resolutions

NOTES: Color bits: 4=16 colors; 8=256 colors; 16=64K colors; 32=16.7 million colors.

IL = Interlaced

* Non-accelerated mode

1.8.5 VESA Feature Connector

The RU430HX motherboard supports a 34-pin or 26-pin VESA feature connector for synchronizing graphics output with an external NTSC or PAL signal and a shared frame buffer interface to maximize multimedia performance, as well as the LPB (Local Peripheral Bus) that provides a glueless bi-directional interface to a video companion device such as an MPEG/live video decoder. The RU430HX also supports other VESA standards such as the VESA DPMS protocol to put a DPMS compliant monitor into power saving modes and the VESA Display Data Channel (DDC2B) that permits transfer of monitor identification and resolution support data for ease of use.

1.8.6 Graphics Drivers and Utilities

Graphics drivers and utilities for Windows 3.11 and Windows 95 are provided on the foundation software CD. These drivers come in a compressed form and are extracted by an installation utility. Also included is a Windows 3.1x control panel applet called Galileo which allows the user to change the screen resolution, number of colors, and large or small fonts while in Windows. Windows NT[†] drivers are embedded in the O.S.

Graphics drivers for OS/2[†] 2.11 and OS/2 WARP, MS-DOS[†] applications such as AutoCAD and Microstation, as well as driver updates for Windows 3.11 and Windows NT may be downloaded from the Intel Applications Support BBS. Drivers for SCO UNIX are available from SCO.

1.9 Audio Subsystem

The RU430HX motherboard features a 16-bit stereo audio subsystem as a factory installed option. The audio subsystem is based upon the Yamaha YMF701 OPL3-SA FM synthesizer. The YMF701 provides all the digital audio and analog mixing functions required for recording and playing of audio on personal computers. These functions include stereo analog-to-digital and digital-to-analog converters, analog mixing, anti-aliasing and reconstruction filters, line and microphone level inputs, and digital audio compression via selectable A-law / μ law, and full digital control of all mixer and volume control functions. The rear panel Mic/Line In function is switchable between Mic In and Line In via software.

Resource	Interrup	ots (Options)	DMA (Options)	I/O (Op	tions)
Sound Blaster (DMA playback, DMA shared with Windows Sound System Capture)	5* 7	9 10	1* 3	220h 240h	
Windows Sound System (DMA playback)	7 9 10*		0* 1 3	530h* E80h	F40h 604h
MPU-401 (IRQ shared with Sound Blaster)				330h* 332h	334h 300h
Game Port				220-22F	ħ

Table 2. RU430HX Audio Resource Mapping

Note: * indicates default setting

1.9.1 Audio Drivers

Audio software and utilities are provided via the foundation software CD for the RU430HX motherboard. Drivers are supplied for MS-DOS, Windows 3.x, Windows 95, and Windows NT. A Windows setup program installs all of the software programs and utilities onto the system hard drive. The software provides for recording from line and mic inputs, Wave, MIDI and CD playback and an audio mixer. Utilities provide control of settings and modes.

1.10 Baseboard Connectors

Figure 3. Motherboard Connector Locations

Pin	Signal Name	Pin	Signal Name
1	Ground	2	Data 0
3	Ground	4	Data 1
5	Ground	6	Data 2
7	Data enable	8	Data 3
9	Sync enable	10	Data 4
11	PCLK enable	12	Data 5
13	N/C	14	Data 6
15	Ground	16	Data 7
17	Ground	18	PCLK
19	Ground	20	BLANK
21	Ground	22	HSYNC
23	N/C	24	VSYNC
25	Ground	26	N/C
27	Key	28	Key
29	IICCLK	30	Ground
31	IICDAT	32	N/C
33	EN1	34	EN2

1.10.1 VESA Feature Connector - J1G1

1.10.2 Wave Table Upgrade Connector - J9G1

Pin	Signal Name		
1	Wave Right		
2	Ground		
3	Wave Left		
4	Ground		
5	Кеу		
6	Ground		
7	MIDI_Write		
8	Ground		

1.10.3 CD Audio - J9H1

Pin	Signal Name
1	Ground
2	CD-Left
3	Ground
4	CD-Right

Pin	Signal Name	Pin	Signal Name
1	+5 V	2	+5 V
3	JoyStick But0	4	JoyStick But2
5	JoyStick X1	6	JoyStick X2
7	Ground	8	MIDI Out
9	Ground	10	JoyStick Y2
11	JoyStick Y1	12	JoyStick But3
13	JoyStick But1	14	MIDI In
15	+5 V	16	Key
17	Кеу	18	Key
19	Line Out Right	20	Ground
21	Right Speaker	22	Ground
23	Left Speaker	24	Key
25	Line Out Left	26	Ground
27	Line In Right	28	-12 V
29	Line In Left	30	Ground
31	Mic In	32	+12 V
33	Ground	34	Ground

1.10.4 MIDI/Audio Upgrade J9G2

1.10.5 Telephony Connector - J9F1

Pin	Signal Name
1	Ground
2	Audio Out
3	Audio In
4	Key

Pin	Signal Name	Pin	Signal Name
1	Ground	2	DENSEL
3	Ground	4	Reserved
5	Key	6	FDEDIN
7	Ground	8	Index #
9	Ground	10	Motor Enable A #
11	Ground	12	Drive Select B #
13	Ground	14	Drive Select A #
15	Ground	16	Motor Enable B #
17	MSEN1	18	DIR #
19	Ground	20	STEP #
21	Ground	22	Write Data #
23	Ground	24	Write Gate #
25	Ground	26	Track 00 #
27	MSEN0	28	Write Protect #
29	Ground	30	Read Data #
31	Ground	32	Side 1 Select #
33	Ground	34	Diskette Change #

1.10.6 Floppy Drive Connector - J9E2

1.10.7 External 3.3 V Power Connector - J9E1

Pin	Name
1	Ground
2	Ground
3	Ground
4	+3.3 V
5	+3.3 V
6	+3.3 V

Pin	Name	Function
1	PWRGD	Power good
2	+5 V	+5 volts VCC
3	+12 V	+12 volts
4	-12 V	-12 volts
5	Ground	Ground
6	Ground	Ground
7	Ground	Ground
8	Ground	Ground
9	-5 V	-5 volts
10	+5 V	+5 volts VCC
11	+5 V	+5 volts VCC
12	+5 V	+5 volts VCC

1.10.8 Primary Power Connector J9C1

1.10.9 Soff-Off Power Supply Connector J8B1

Pin	Name	Function
1	PS_ON	Remote On/Off
2	N/C	No connect
3	PS_COM	Supply presence

1.10.10 IDE Connectors - J8C2, J8C1

Pin	Signal Name	Pin	Signal Name
1	Reset IDE	2	Ground
3	Host Data 7	4	Host Data 8
5	Host Data 6	6	Host Data 9
7	Host Data 5	8	Host Data 10
9	Host Data 4	10	Host Data 11
1	Host Data 3	12	Host Data 12
3	Host Data 2	14	Host Data 13
5	Host Data 1	16	Host Data 14
17	Host Data 0	18	Host Data 15
9	Ground	20	Key

continued 🖛

Pin	Signal Name	Pin	Signal Name
21	DDRQ0 (DDRQ1)	22	Ground
23	I/O Write #	24	Ground
25	I/O Read #	26	Ground
27	IOCHRDY	28	Vcc pull-up
29	DDACK0 (DDACK1) #	30	Ground
31	IRQ14 (IRQ15)	32	Reserved
33	Addr 1	34	Reserved
35	Addr 0	36	Addr 2
37	Chip Select 1P (1S) #	38	Chip Select 3P (3S) #
39	Activity #	40	Ground

IDE Connectors - J8C2, J8C1 (continued)

1.10.11 PCI/ISA Riser Connector - J6E2

Pin	Signal Name	Pin	Signal Name	Pin	Signal	Pin	Signal Name
A1	IOCHK#	B1	GND	E1	GND	F1	GND
A2	SD7	B2	RSTDRV	E2	GND	F2	GND
A3	SD6	B3	Vcc	E3	PCIINT1#	F3	PCIINT3#
A4	SD5	B4	IRQ9	E4	PCIIINT2#	F4	PCIINT4#
A5	SD4	B5	-5 V	E5	Vcc	F5	Vcc
A6	SD3	B6	DRQ2	E6	Key	F6	Кеу
A7	SD2	B7	-12 V	E7	Vcc	F7	Vcc
A8	SD1	B8	0WS#	E8	PCIRST#	F8	PCKLF
A9	SD0	B9	+12 V	E9	GNT0#	F9	GND
A10	IOCHRDY	B10	GND	E10	REQ0#	F10	GNT1#
A11	AEN	B11	SMEMW#	E11	GND	F11	GND
A12	SA19	B12	SMEMR#	E12	PCKLE	F12	REQ1#
A13	SA18	B13	IOW#	E13	GND	F13	AD31
A14	SA17	B14	IOR#	E14	AD30	F14	AD29
A15	SA16	B15	DACK3#	E15	3.3 V	F15	3.3 V
A16	SA15	B16	DRQ3	E16	Key	F16	Key
A17	SA14	B17	DACK1#	E17	3.3 V	F17	3.3 V
A18	SA13	B18	DRQ1	E18	AD28	F18	AD27
A19	SA12	B19	REFRESH#	E19	AD26	F19	AD25
A20	SA11	B20	SYSCLK	E20	AD24	F20	CBE3#
A21	SA10	B21	IRQ7	E21	AD22	F21	AD23
A22	SA9	B22	IRQ6	E22	AD20	F22	AD21
A23	SA8	B23	IRQ5	E23	AD18	F23	AD19

continued 🕗

Pin	Signal Name	Pin	Signal Name	Pin	Signal	Pin	Signal Name
A24	SA7	B24	IRQ4	E24	3.3 V	F24	3.3 V
A25	SA6	B25	IRQ3	E25	Кеу	F25	Key
A26	SA5	B26	DACK2#	E26	3.3 V	F26	3.3 V
A27	SA4	B27	TC	E27	AD16	F27	AD17
A28	SA3	B28	BALE	E28	FRAME#	F28	IRDY#
A29	SA2	B29	Vcc	E29	CBE2#	F29	DEVSEL#
A30	SA1	B30	OSC	E30	TRDY#	F30	PLOCK#
A31	SA0	B31	GND	E31	STOP#	F31	PERR#
C1	SBHE#	D1	MEMCS16#	G1	SDONE	H1	SERR#
C2	LA23	D2	IOCS16#	G2	SBO#	H2	AD15
C3	LA22	D3	IRQ10	G3	CBE1#	H3	AD14
C4	LA21	D4	IRQ11	G4	PAR	H4	AD12
C5	LA20	D5	IRQ12	G5	GND	H5	GND
C6	LA19	D6	IRQ15	G6	Кеу	H6	Key
C7	LA18	D7	IRQ14	G7	GND	H7	GND
C8	LA17	D8	DACK0#	G8	AD13	H8	AD10
C9	MEMR#	D9	DRQ0	G9	AD11	H9	AD8
C10	MEMW#	D10	DACK5#	G10	AD9	H10	AD7
C11	SD8	D11	DRQ5	G11	CBE0#	H11	AD5
C12	SD9	D12	DACK6#	G12	AD6	H12	AD3
C13	SD10	D13	DRQ6	G13	AD4	H13	AD1
C14	SD11	D14	DACK7#	G14	AD2	H14	AD0
C15	SD12	D15	DRQ7	G15	Кеу	H15	Key
C16	SD13	D16	Vcc	G16	Vcc	H16	Vcc
C17	SD14	D17	MASTER#	G17	Vcc	H17	Vcc
C18	SD15	D18	GND	G18	GND	H18	GND
				G19	GND	H19	GND

PCI/ISA Riser Connector - J6E2 (continued)

Pin	Signal Name
1	Ground
2	+12 V
3	Ground
4	Ground
5	RESET
6	Key
7	PWR LED +
8	Кеу
9	PWR LED -
10	Кеу
11	HDD LED +
12	HDD LED -
13	Кеу
14	PWR LED +
15	Power Switch
16	Ground
17	Sleep Req
18	Sleep +5 (1K pullup)
19	Кеу
20	+5 V
21	Key
22	IR_RX
23	Ground
24	IR_TX
25	Consumer IR
26	SPKROUT
27	SPKRHDR
28	Key
29	Ground

1.10.12 Front Panel Connector - J2A1

Pin	Signal Name
1	HDD LED +
2	Кеу
3	HDD LED -
4	Кеу
5	Ground
6	Кеу
7	Reset
8	Кеу
9	+5 V
10	Кеу
11	IR_RX
12	Кеу
13	Ground
14	Кеу
15	IR_TX
16	Кеу
17	Consumer IR
18	Кеу

1.10.13 Front Panel Connector - J2A2

1.10.14 Power Supply Connectors

When used with a power supply that supports remote power on/off, the RU430HX baseboard can turn off the system power via software control (soft-off). The Powerman utility supplied for Windows 3.1x allows for soft-off as does the shutdown icon in Windows 95 Start menu. The system BIOS will turn the system power off when it receives the proper APM command from the OS. For example, Windows 95 will issue this APM command when the user selects "Shutdown the computer" option. Note that APM must be enabled in the system BIOS and OS in order for the soft-off feature to work correctly. Power supplies that support soft-off interface to the baseboard via the 3-pin "PWS CNTRL" connector (J8B1) which is a Molex 2695 connector featuring a security latch for reliability. In order for the system to recognize the presence of a soft-off power supply, the supply must tie pin 3 of the PWS Control connector to ground.

The system's front panel ON/OFF button is connected to the baseboard via the 1x4-pin "PS SLEEP" header (J2A1). Pins 15 and 16 of this connector should be tied to a SPST momentary button to support a power button and, likewise, pins 17 and 18 provide support for a energy saving sleep/resume button. These functions can be integrated into a system as two separate buttons or a single button. By implementing a DPST momentary button connected to all four pins of the PS SLEEP connector, both sleep/resume and power on/off functions can be supported via a single button. In this configuration, pressing the button momentarily (closing the switch) while the system is off will turn the system on as you would expect (POST is run). Pressing the button while the system is running (system will beep), causes the system to enter the energy saving Stand By (sleep) mode. Pressing the button (or keyboard/mouse) while the system is sleeping, causes the

system to resume to full power and return to whatever application was active before entering sleep mode. To turn the system off using the front panel button, the button must be pressed (system will beep) and held down (2 seconds) until the system produces a two-toned beep. At that time the system will power off. Remember, the system may also be powered off by utilizing the soft-off feature mentioned above. When the button is pressed again, the system will power on and run POST. Traditional power supplies with mechanical ON/OFF buttons (those that do not support soft-off) will bypass these connectors.

1.10.15 Front panel Connectors

The board provides header connectors to support functions typically located on the chassis bezel. Front panel features supported include:

- System reset
- Power LED
- Hard drive activity LED
- Power switch
- System speaker
- CPU fan
- Infra-red (IrDA) port
- Sleep/resume

Figure 4. Front Panel I/O Connectors

1.10.15.1 Speaker

The external speaker provides error beep code information during the Power-On Self Test, if the system cannot use the video interface. If there are no speakers plugged into the audio output jack, the audio output is redirected to the external speaker.

1.10.15.2 Infra-Red (IrDA) connector

Serial port 2 can be configured to support an IrDA or Consumer Ir module via a front panel header connector. Once configured for IrDA, the user can transfer files to or from portable devices such as laptops, PDA's, and printers using application software such as LapLink. The IrDA specification provides for data transfers at 115 Kbps from a distance of 1 meter. Consumer Ir is typically used for remote control of telephony and multimedia functions.

1.10.15.3 Sleep / resume

When Advanced Power Management (APM) is activated in the system BIOS and the Operating System's APM driver is loaded, Sleep mode (Stand-By) can be entered in one of three ways: an optional front panel "Sleep/Resume" button, a user defined keyboard hot key, or prolonged system inactivity. The Sleep/Resume button is supported by a 2-pin header located on the front panel I/O connector. Closing the "Sleep" switch will generate an SMI (System Management Interrupt) to the processor which immediately goes into System Management Mode (SMM), the so called "Sleep" mode.

The front panel "Sleep mode" switch must be a momentary two pin SPST type that is normally open. The function of the Sleep/Resume button can also be achieved via a keyboard hot-key sequence, or by a time-out of the system inactivity timer. Both the keyboard hot-key and the inactivity timer are programmable in the BIOS setup (timer is set to 10 minutes by default). To reactivate the system, or "Resume", the user must simply press the sleep/resume button again, or use the keyboard or mouse. Mouse activity will only "wake up" the system if a mouse driver is loaded. While the system is in Stand-By or "sleep" mode it is fully capable of responding to and servicing external interrupts (such as incoming FAX) even though the monitor will only turn on if a user interrupt (keyboard/mouse) occurs as mentioned above.

1.10.15.4 HDD LED

This header can be connected to an LED to provide a visual indicator for when an IDE hard drive connected to the onboard IDE controller is being read or written.

1.10.15.5 Reset

This header can be connected to a momentary SPST type switch that is normally open. When the switch is closed, the system will hard reset and run POST.

1.10.16 Audio Connectors

Figure 5. Audio I/O Connections

1.10.16.1 Audio I/O Connector

An optional audio I/O module is available for the RU430HX motherboard. The module contains all of the necessary audio jacks (Speaker Out, Line IN, Mic IN) and a game port. The module plugs into a 34-pin header connector on the motherboard. The audio connectors are 1/8-inch stereo jacks. An additional connector located on the audio I/O module allows routing of the audio jacks to the front of the chassis. The audio output is connected to the standard PC speaker to provide an output path that does not require external speakers. If external speakers are plugged into the attached I/O module, the audio output is redirected to the external speakers. If headphones are plugged into a front panel speaker jack, the audio is redirected to the headphones.

Figure 6. RU430HX Audio I/O Module

1.10.16.2 CD-ROM Audio Input

A four pin connector is provided for interfacing the audio output stream from a CD-ROM reader into the audio sub-system mixer. This connector is compatible with the typical cable that is supplied with CD-ROM readers for interfacing to audio add-in cards.

1.10.16.3 Wave Table Upgrade

With the standard audio feature (YMF701) installed, an eight pin header is provided to connect to a wave table upgrade card for richer sound quality in both DOS and Windows environments. The wave table upgrade module typically is installed into a standard ISA slot with a cable routed to the connector.

Compatible wave table upgrade cards are available from several venders; the ICS WaveFront upgrade module and the CrystaLake Series 2000 wave table product family add a complete General MIDI compatible music solution to the RU430HX based system.

The advanced audio feature (YMF704) includes wave table sound and the upgrade connector is not installed.

Figure 7. RU430HX Wave Table Upgrade Module

1.10.17 Back Panel Connectors

The back panel provides external access to PS/2 style keyboard and mouse connectors, two serial port connectors, one parallel port connector, a VGA connector, and the external audio jacks. Figure 8 shows the general location of the I/O connectors.

Figure 8. I/O Connections

Pin	Signal Name
1	Data
2	No connect
3	Ground
4	+5 V (fused)
5	Clock
6	No connect

1.10.17.1 PS/2 Keyboard and Mouse Connectors - J7J1 and J8J1

1.10.17.2 Serial Port Connectors - J5J2 and J6J1

Pin	Signal Name
1	DCD
2	Serial In #
3	Serial Out #
4	DTR#
5	GND
6	DSR#
7	RTS#
8	CTS#
9	GND

1.10.17.3 Parallel Port Connector - J3J1

Pin	Signal Name	Pin	Signal Name
1	Strobe#	14	Auto Feed#
2	Data bit	15	Fault#
3	Data bit	16	INIT#
4	Data bit	17	SLCT IN#
5	Data bit	18	Ground
6	Data bit	19	Ground
7	Data bit	20	Ground
8	Data bit	21	Ground
9	Data bit	22	Ground
10	ACK#	23	Ground
11	Busy	24	Ground
12	Error	25	Ground
13	Select		

Pin	Signal Name	
1	Red	
2	Green	
3	Blue	
4	No connect	
5	Ground	
6	Ground	
7	Ground	
8	Ground	
9	No connect	
10	Ground	
11	No connect	
12	No connect	
13	Horizontal Sync	
14	Vertical Sync	
15	No connect	

1.10.17.4 Video Monitor Connector - J1J1

1.11 Jumper Settings

Figure 9. Jumper Locations

Table 3. Configuration Jumper Settings

Function	Jumper	Configuration
Password clear	J1F1-A	1-2 Password enabled (Default) 2-3 Password clear/disabled
CMOS clear	J1F1-A	4-5 Keep (Default) 5-6 Clear
CMOS Setup Access	J1F1-B	1-2 Access allowed (Default) 2-3 Access denied
Processor voltage	J1F1-B	4-5 Standard voltage (Default) 5-6 VRE enabled
CPU speed ratio	J1F1-C	See Table 4
Host bus speed (Note: These jumpers also set the PCI and ISA clock speeds.)	J1F1-D	See Table 4

1.11.1 CPU Configuration (J1F1-C, D)

These allow the board to be switched between different speeds of the Pentium processor. These jumpers also affect the PCI and ISA clock speeds according to the following table.

CPU Freq. (MHz)	Host Bus Freq. (MHz)	Jumper Settings for J9C1-C	Jumper Settings for J9C1-D	PCI Freq. (MHz)	Clock Ratio
200	66	1-2 and 5-6	1-2 and 5-6	33	6/2
180	60	2-3 and 4-5	1-2 and 5-6	30	6/2
166	66	1-2 and 5-6	2-3 and 5-6	33	5/2
150	60	2-3 and 4-5	2-3 and 5-6	30	5/2
133	66	1-2 and 5-6	2-3 and 4-5	33	4/2
120	60	2-3 and 4-5	2-3 and 4-5	30	4/2
100	66	1-2 and 5-6	1-2 and 4-5	33	3/2
90	60	2-3 and 4-5	1-2 and 4-5	30	3/2
75	50	2-3 and 5-6	1-2 and 4-5	25	3/2
Reserved	-	1-2 and 4-5	-	-	-

 Table 4.
 CPU/SYSTEM Speed Settings

1.11.2 Password clear (J1F1-A, Pins 1, 2, and 3)

Allows system password to be cleared by moving the jumper from pins 1-2 to pins 2-3 and turning the system on. The system should then be turned off and the jumper should be returned to the 1-2 position to restore normal operation. This procedure should only be done if the user password has been forgotten. The password function is effectively disabled if this jumper is in the 2-3 position. Default is for the password to be enabled (1-2 position).

1.11.3 Clear CMOS (J1F1-A, Pins 4, 5, and 6)

Allows CMOS settings to be reset to default values by moving the jumper from pins 4-5 to pins 5-6 and turning the system on. When the system reports that "NVRAM cleared by jumper", the system can be turned off, and the jumper should be returned to the 4-5 position to restore normal operation. This procedure should be done whenever the system BIOS is updated. Default is for this jumper to be on pins 4-5.

1.11.4 CMOS Setup Access (J1F1-B, Pins 1, 2, and 3)

Allows access to CMOS Setup utility to be disabled by moving this jumper from the 1-2 position to the 2-3 position. Default is for access to setup to be enabled (1-2 position).

1.11.5 CPU Voltage (J1F1-B, Pins 4, 5, and 6)

This jumper block changes the output of the on-board voltage regulator. Pins 4-5 should be jumpered for processors that require standard voltage regulation. Pins 5-6 should be jumpered for processors that require the VRE specification. This jumper should not be changed by the user

unless changing to a new processor type. Some upgrade processors may require a different setting. Check the processor's documentation for the correct setting. (Standard = 3.135-3.63V, VR = 3.3-3.465V, VRE = 3.465-3.63V)

1.12 Reliability

The Mean-Time-Between-Failures (MTBF) data is calculated from predicted data @ 55° C.

RU430HX Motherboard TBD

1.13 Environmental

Parameter	Specification		
Temperature			
Non-Operating	-40°C to +70°C		
Operating	+0°C to +55°C		
DC Voltage			
+5 V	±5 %		
-5 V	±5 %		
+12 V	±5 %		
-12 V	±5 %		
+3.3 V	±5 %		
Shock			
Unpackaged	50 G trapezoidal wavefo	rm	
	Velocity change of 170 in	nches/second	
Packaged	Half sine 2 millisecond		
		Free fall	Velocity (Change -
	Product (Weight)	(height in inches)	inches/second)
	<20 lbs	36	167
	21-40 lbs	30	152
	41-80 lbs	24	136
	81-100 lbs	18	118
Vibration			
Unpackaged	5 Hz to 20 Hz : 0.01g ² Hz sloping up to 0.02 g ² Hz		
	20 Hz to 500 Hz : 0.02g ² Hz (flat)		
Packaged	10 Hz to 40 Hz : 0.015g	² Hz (flat)	
	40 Hz to 500 Hz : 0.015	g ² Hz sloping down to	o 0.00015 g² Hz

Table 5. Board Environmental Specifications

1.14 Power Consumption

Table 6 lists the wattage and current specifications for a hypothetical system configured with the motherboard and the following components: a 133 MHz Pentium Processor, 16 MB RAM, 256 KB cache, 3.5-inch floppy drive, 1 GB hard drive. This information is preliminary and is provided only as a guide for calculating **approximate** total system power usage with additional resources added.

Table 6. Power Usage

		DC (amps)			
	AC (watts)	+5 V	-5 V	+12 V	-12 V
No APM enabled					
DOS prompt	TBD	TBD	TBD	TBD	TBD
APM enabled					
DOS prompt	TBD	TBD	TBD	TBD	TBD

1.15 Regulatory Compliance

TBD

2.1 Memory Map

Table 7.	Memory Map
----------	------------

Address Range (Decimal)	Address Range (hex)	Size	Description
1024K-131072K	100000-8000000	127 M	Extended Memory
960K-1023K	F0000-FFFFF	64 K	AMI System BIOS
952K-959K	EE000-EFFFF	8 K	Main BIOS (available as UMB)
948K-951K	ED000-EDFFF	4 K	ESCD (Plug and Play configuration area)
944K-947K	EC000-ECFFF	4 K	OEM LOGO (available as UMB)
896K-943K	E0000-EBFFF	48 K	BIOS reserved
800-895K	C8000-DFFFF	96 K	Available HI DOS memory (open to ISA and PCI bus)
640K-799K	A0000-C7FFF	160 K	Off-board video memory and BIOS
639K	9FC00-9FFFF	1 K	Extended BIOS Data (moveable by QEMM, 386MAX)
512K-638K	80000-9FBFF	127 K	Extended conventional
0K-511K	00000-7FFFF	512 K	Conventional

2.2 I/O Map

Address (hex)	Size	Description
0000 - 000F	16 bytes	PIIX3 - DMA 1
0020 - 0021	2 bytes	PIIX3 - Interrupt Controller 1
002E - 002F	2 bytes	Ultra I/O Configuration
0040 - 0043	4 bytes	PIIX3 - Timer 1
0060	1 byte	Keyboard Controller Byte - Reset IRQ
0061	1 byte	PIIX3 - NMI, speaker control
0064	1 byte	Kbd Controller, CMD/STAT Byte
0070, bit 7	1 bit	PIIX3 - Enable NMI
0070, bits 6:0	7 bits	PIIX3 - real-time clock, address
0071	1 byte	PIIX3 - real-time clock, data
0078	1 byte	Reserved - Brd. Config.
0079	1 byte	Reserved - Brd. Config.

continued 🖛

Address (hex)	Size	Description	
0080 - 008F	16 bytes	PIIX3 - DMA Page Register	
00A0 - 00A1	2 bytes	PIIX3 - Interrupt Controller 2	
00B2	1 byte	APM control port	
00B3	1 byte	APM status port	
00C0 - 00DE	31 bytes	PIIX3 - DMA 2	
00F0	1 byte	Reset Numeric Error	
0170 - 0177	8 bytes	Secondary IDE Channel	
01F0 - 01F7	8 bytes	Primary IDE Channel	
0200 - 0207	8 bytes	Gameport Joystick	
0220 - 022F	16 bytes	Sound Blaster / OPL3-SA base port	
0270 - 0273	4 bytes	I/O read port for Plug and Play	
0278 - 027B	4 bytes	Parallel Port 2	
02E8 - 02EF	8 bytes	Serial Port 4	
02F8 - 02FF	8 bytes	On-Board Serial Port 2	
0330 - 0331	2 bytes	Audio - MUP-401	
0376	1 byte	Sec IDE Chan Cmd Port	
0377	1 byte	Sec IDE Chan Stat Port	
0378 - 037F	8 bytes	Parallel Port 1	
0388 - 038B	4 bytes	Audio - FM Synth	
03B0 - 03BB	4 bytes	S3 Trio64V+	
03BC - 03BF	4 bytes	Parallel Port 3	
03C0 - 03DF	16 bytes	S3 Trio64V+	
03E8 - 03EF	8 bytes	Serial Port 3	
03F0 - 03F5	6 bytes	Floppy Channel 1	
03F6	1 byte	Pri IDE Chan Cmd Port	
03F7 (Write)	1 byte	Floppy Chan 1 Cmd	
03F7, bit 7	1 bit	Floppy Disk Chg Chan 1	
03F7, bits 6:0	7 bits	Pri IDE Chan Status Port	
03F8 - 03FF	8 bytes	On-Board Serial Port 1	
04D0 - 04D1	2 bytes	Edge/level triggered	
LPT + 400h	8 bytes	ECP port, LPT + 400h	
530	8 bytes	Windows Sound System base port	
0608 - 060B	4 bytes	Audio - WSS	
0CF8 - 0CFB	4 bytes	PCI Config Address Reg.	
0CF9	1 byte	Turbo & Reset Control Reg.	
0CFC-0CFF*	4 bytes	PCI Config Data Reg	
FF00 - FF07	8 bytes	IDE Bus Master Reg.	
FFA0 - FFA7	8 bytes	Primary Bus Master IDE Registers	
FFA8 - FFAF	8 bytes	Secondary Bus Master IDE Registers	

Table 8.I/O Map (continued)

* Only by DWORD accesses.

2.2.1 Port 79 Definition

Bit	Description	Bit = 1	Bit = 0
0	Reserved	N/A	N/A
1	Soft Off capable power supply present	No	Yes
2	Onboard Audio present	Yes	No
3	External CPU clock	See Table 4	See Table 4
4	External CPU clock	See Table 4	See Table 4
5	Setup Disable	Enable access	Disable access
6	Clear CMOS	Keep values	Clear values
7	Password Clear	Keep password	Clear password

2.3 Soft-Off Control

The board design supports Soft-off control via the SMM code in the BIOS. This feature is a manufacturing option. The CS1 pinout of the I/O controller is connected to the Soft-off control line in the power supply circuit. The registers in the I/O controller that set the I/O address and control of the CS1 pin are NOT setup until the SMM code is activated. The code performs the following operations:

OUT 0Ch to I/O port 2Eh OUT 75h to I/O port 2Fh OUT 11h to I/O port 2Eh OUT 00h to I/O port 2Fh OUT 0Dh to I/O port 2Eh OUT A0h to I/O port 2Fh

After setting the above registers, any read operation to I/O location 75h will trigger the Soft-off circuit and turn the power supply off.

2.4 PCI Configuration Space Map

Bus Number (hex)	Dev Number (hex)	Function Number (hex)	Description
00	00	00	Intel 82439HX (TXC)
00	07	00	Intel 82371FB (PIIX3) PCI/ISA bridge
00	07	01	Intel 82371FB (PIIX3) IDE Bus Master
00	07	02	Intel 82371FB (PIIX3) USB
00	08	00	
00	11	00	PCI Expansion Slot
00	13	00	PCI Expansion Slot

 Table 9.
 PCI Configuration Space Map

2.5 DMA Channels

Table 10.	DMA (Channels
		onanneis

DMA	Data Width	System Resource
0	8- or 16-bits	Audio
1	8- or 16-bits	Audio
2	8- or 16-bits	Floppy
3	8- or 16-bits	Parallel Port
4		Reserved - Cascade channel
5	16-bits	Open
6	16-bits	Open
7	16-bits	Open

2.6 Interrupts

Table 11. Interrupts

IRQ	System Resource
NMI	I/O Channel Check
0	Reserved, Interval Timer
1	Reserved, Keyboard buffer full
2	Reserved, Cascade interrupt from slave PIC
3	Serial Port 2
4	Serial Port 1
5	Audio
6	Floppy
7	Parallel Port 1
8	Real-time Clock
9	User available
10	WSS
11	User available
12	Onboard Mouse Port if present, else user available
13	Reserved, Math coprocessor
14	Primary IDE if present, else user available
15	Secondary IDE if present, else user available

3.1 Introduction

The board uses an Intel BIOS, which is stored in Flash EEPROM and upgraded using a floppy disk-based program. In addition to the Intel BIOS, the Flash EEPROM also contains the Setup utility, Power-On Self Tests (POST), APM 1.1, the PCI auto-configuration utility, and Windows 95 ready Plug and Play. This board also supports system BIOS shadowing, allowing the BIOS to execute from 64-bit on-board write-protected DRAM.

The BIOS displays a sign-on message during POST identifying the type of BIOS and a five-digit revision code. The initial production BIOS in the board will be identified as 1.00.01.CY0.

Information on BIOS functions can be found in the IBM PS/2 and Personal Computer BIOS Technical Reference published by IBM, and the ISA and EISA Hi-Flex AMIBIOS Technical Reference published by AMI. Both manuals are available at most technical bookstores

3.2 BIOS Flash Memory Organization

The Intel PA28FB100BX 1 Mb Flash component is organized as 128K x 8 (128 KB). Flash memory is visible at system addresses FFFE0000 - FFFFFFFh. The Flash device is divided into four areas, as described in Table 12.

System Address		FLASH Memory Area
FE000H	FFFFH	8 KB Boot Block (erasable only if jumpered)
FD000H	FDFFFH	4 KB Plug and Play ESCD Storage Area
FC000H	FCFFFH	4 KB Custom LOGO and Vital Product Data
E0000H	FBFFFH	112 KB System BIOS Reserved during boot

Table 12. Flash Memory Organization

3.3 BIOS Upgrades

Flash memory makes distributing BIOS upgrades easy. A new version of the BIOS can be installed from a diskette. BIOS upgrades are available to be down loaded from the secure section on the Intel bulletin board, or Intel's FTP site.

The disk-based Flash upgrade utility, FMUP.EXE, has three options for BIOS upgrades:

- The Flash BIOS can be updated from a file on a disk;
- The current BIOS code can be copied from the Flash EEPROM to a disk file as a backup in the event that an upgrade cannot be successfully completed; or
- The BIOS in the Flash device can be compared with a file to ensure the system has the correct version.

The upgrade utility ensures the upgrade BIOS extension matches the target system to prevent accidentally installing a BIOS for a different type of system.

3.4 PCI IDE Support

The two local bus IDE connectors with independent I/O channel support are setup up automatically by the BIOS if the user selects "Autoconfiguration" in setup. The IDE interface supports PIO Mode 3, and Mode 4 hard drives and recognition of ATAPI CD-ROMs, tape drives, and any other ATAPI devices. The BIOS will determine the capabilities of each drive and configure them to optimize capacity and performance. For the high capacity hard drives typically available today, the drive will be automatically be configured for Logical Block Addressing (LBA) for maximum capacity and to PIO Mode 3 or 4 depending on the capability of the drive. Mixing IDE drives, on the same cable, that offer different transfer modes is supported. Each drive's mode is supported independently. The user is able to override the auto-configuration options by using the manual mode setting.

3.5 PCI Auto-configuration

The PCI auto-configuration utility operates in conjunction with the system Setup utility to allow the insertion and removal of PCI cards to the system without user intervention (Plug and Play). When the system is turned on after adding a PCI add-in card, the BIOS automatically configures interrupts, I/O space, and other parameters. PCI interrupts are distributed to available ISA interrupts that have been not been assigned to an ISA card, or system resources. Those interrupts left set to "available" in the CMOS setup will be considered free for PCI add-in card use. It is nondeterministic as to which PCI interrupt will be assigned to which ISA IRQ.

The PCI Auto-Configuration function complies with version 2.10 of the PCI BIOS specification. System configuration information is stored in ESCD format. The ESCD data may be cleared by setting the CMOS clear jumper to the ON position.

PCI specification 2.1 for add-in card auto-configuration is also a part of the Plug and Play BIOS. Peer-to-peer hierarchical PCI Bridge 1.0 is supported, and by using an OEM supplied option ROM or TSR, a PCI-to-PCMCIA bridge capability is possible as well.

3.6 ISA Plug and Play

The BIOS incorporates ISA Plug and Play capabilities as delivered by Plug and Play Release 1.0A (Plug and Play BIOS V.. 1.0A, ESCD V.. 1.03). When used in conjunction with the ISA Configuration Utility (ICU) for DOS or Windows 3.x, the system allows auto-configuration of Plug and Play ISA cards, PCI cards, and resource management for legacy ISA cards. Because the BIOS supports configuring devices across PCI bridges, release 1.41 or greater of the ICU must be used with the board to properly view and change system settings. System configuration information is stored in ESCD format. The ESCD data may be cleared by setting the CMOS clear jumper to the ON position.

The BIOS also has a setup option to support the Windows 95 run time plug and play utilities. When this option is selected, only devices critical to booting are assigned resources by the BIOS. Device Node information is available for all devices to ensure compatibility with Windows 95.

Copies of the IAL Plug and Play specification may be obtained via the Intel BBS, or via CompuServe by typing Go PlugPlay.

3.7 Advanced Power Management

The BIOS has support for Advanced Power Management (APM version 1.1). The energy saving Stand By mode can be initiated by a keyboard hot key sequence set by the user, a time-out period set by the user, or by a suspend/resume button tied to the front panel sleep connector.

When in Stand-by mode, the board reduces power consumption by utilizing the Pentium processor's System Management Mode (SMM) capabilities and also spinning down hard drives and turning off VESA DPMS compliant monitors. The user may select which DPMS mode (Stand By, Suspend, or Off) send to the monitor in setup. The ability to respond to external interrupts is fully maintained while in Stand-by mode allowing the system to service requests such as in-coming FAX's or network messages while unattended. Any keyboard or mouse activity brings the system out of the energy saving Stand By mode. When this occurs the monitor and IDE drives are turned back on immediately.

APM is enabled in BIOS by default, however, the system must be configured with an APM driver in order for the system power saving features to take effect. Windows 95 will enable APM automatically upon detecting the presence of the APM BIOS.

3.8 Language Support

The BIOS setup screen and help messages are supported in 32 languages. There are 5 languages translated at this time for use; American English, German, Italian, French, and Spanish. Translations of other languages will available at a later date.

With a 1 Mb Flash BIOS, only one language can be resident at a time. The default language is American English, and will always be present unless another language is programmed into the BIOS using the Flash Memory Update Program (FMUP) available on the Intel BBS.

3.9 Boot Options

Booting from CD-ROM is supported in adherence to the "El Torito" bootable CD-ROM format specification developed by Phoenix Technologies and IBM. Under the *Boot Options* field in setup, *CD-ROM* is one of four possible boot devices which are defined in priority order. The default setting is for floppy to be the primary boot device and hard drive to be the secondary boot device. If CD-ROM is selected, it must be the first device. The third and fourth devices are set to *disabled* in the default configuration.. The user can add also select *network* as a boot device. The network option allows booting from a network add-in card with a remote boot ROM installed.

⇒ NOTE

A copy of "El Torito" is available on the Phoenix Web page (http://www.ptltd.com/techs/specs.html).

3.10 Flash LOGO Area

The baseboard supports a 4 KB programmable FLASH user area located at EC000-ECFFF. An OEM may use this area to display a custom logo. The BIOS accesses the user area just after completing POST. A utility is available from Intel to assist with installing a logo into flash for display during POST. Contact your local Intel Sales office or authorized distributor for further information.

3.11 Setup Enable Jumper

A baseboard configuration jumper controls access to the BIOS Setup utility. By setting the jumper to the disable position, the user is prevented from accessing the Setup utility during the Power-On Self Test or at any other time. The message prompting the user to press $\langle F1 \rangle$ to enter setup is also disabled.

3.12 BIOS Setup Utility

The ROM-based Setup utility allows the configuration to be modified without opening the system for most basic changes. The Setup utility is accessible only during the Power-On Self Test (POST) by pressing the $\langle F1 \rangle$ key after the POST memory test has begun and before boot begins. A prompt may be enabled that informs users to press the $\langle F1 \rangle$ key to access Setup. A jumper setting on the baseboard can be set to prevent user access to Setup for security purposes.

3.12.1 Overview of the Setup Menu Screens

The Setup program initially displays the Main menu screen. In each screen there are options for modifying the system configuration. Select a menu screen by pressing the left $\langle \leftrightarrow \rangle$ or right $\langle \rightarrow \rangle$ arrow keys. Use the up $\langle \uparrow \rangle$ or down $\langle \downarrow \rangle$ arrow keys to select items in a screen. Use the $\langle \text{Enter} \rangle$ key to select an item for modification. For certain items, pressing $\langle \text{Enter} \rangle$ will bring up a subscreen. After you have selected an item, use the arrow keys to modify the setting.

Setup Menu Screen	Description
Main	For setting up and modifying some of the basic options of a PC, such as time, date, diskette drives, hard drives.
Advanced	For modifying the more advanced features of a PC, such as peripheral configuration and advanced chipset configuration.
Security	For specifying passwords that can be used to limit access to the system.
Exit	For saving or discarding changes.
Setup Subscreen	Description
Floppy Options	For configuring your diskette drives.
IDE Device Configuration	For configuring your IDE devices.
Boot Options	For modifying options that affect the system boot up, such as the boot sequence.
Peripheral Configuration	For modifying options that affect the serial ports, the parallel port, and the disk drive interfaces.
Advanced Chipset Configuration	For modifying options that affect memory and system busses.
Power Management Configuration	For accessing and modifying Advanced Power Management (APM) options.
Plug and Play Configuration	For modifying options that affect the system's Plug and Play capabilities.

 Table 13.
 Overview of the Setup Menu Screens

3.12.2 Main BIOS Setup Screen

This section describes the Setup options found on the main menu screen. If you select certain options from the main screen (e.g., Hard Disk), the Setup program switches to a subscreen for the selected option.

3.12.2.1 System Date

Specifies the current date. Select the month from a pop-up menu.

3.12.2.2 System Time

Specifies the current time.

3.12.2.3 Floppy Options

When selected, this pops up the Floppy Options menu.

3.12.2.4 Primary Master

Reports if an IDE device is connected to the system. When selected, this brings up the IDE Device Configuration subscreen.

3.12.2.5 Primary Slave

Reports if an IDE device is connected to the system. When selected, this brings up the IDE Device Configuration subscreen.

3.12.2.6 Secondary Master

Reports if an IDE device is connected to the system. When selected, this brings up the IDE Device Configuration subscreen.

3.12.2.7 Secondary Slave

Reports if an IDE device is connected to the system. When selected, this brings up the IDE Device Configuration subscreen.

3.12.2.8 Language

Specifies the language of the text strings used in the Setup program and the BIOS. The options are any installed languages.

3.12.2.9 Boot Options

When selected, this brings up the Boot Options subscreen.

3.12.2.10 Video Mode

Reports the video mode. There are no options.

3.12.2.11 Mouse

Reports if a mouse is installed or not. There are no options.

3.12.2.12 Base Memory

Reports the amount of base memory. There are no options.

3.12.2.13 Extended Memory

Reports the amount of extended memory. There are no options.

3.12.3 Floppy Options Subscreen

3.12.3.1 Floppy A:

Reports if a diskette drive is connected to the system. There are no options.

3.12.3.2 Floppy B:

Reports if a second diskette drive is connected to the system. There are no options.

3.12.3.3 Floppy A: Type

Specifies the physical size and capacity of the diskette drive. The options are Disabled, 360 KB, 5.25-inch; 1.2 MB, 5.25-inch; 720 KB, 3.5-inch; 1.44/1.25 MB, 3.5-inch; 2.88 MB, 3.5-inch. The default is 1.44/1.25 MB, 3.5-inch.

3.12.3.4 Floppy B: Type

Specifies the physical size and capacity of the diskette drive. The options are Disabled, 360 KB, 5.25-inch; 1.2 MB, 5.25-inch; 720 KB, 3.5-inch; 1.44/1.25 MB, 3.5-inch; 2.88 MB, 3.5-inch. The default is Disabled.

3.12.3.5 Floppy Access

Specifies read/write access for all attached floppy drives. The options are Read/Write and Read Only. The default is Read/Write.

3.12.4 IDE Device Configuration Subscreen

3.12.4.1 IDE Device Configuration

Used to manually configure the hard drive or have the system auto configure it. The options are Auto Configured, User Definable and Disabled. The default is Auto Configured. If you select User Definable then the Number of Cylinders, Number of Heads, and Number of Sectors items can be modified.

3.12.4.2 Number of Cylinders

If IDE Device Configuration is set to User Definable, you must type the correct number of cylinders for your hard disk. If Hard Disk Type is set to Auto Configured, this reports the number of cylinders for your hard disk and cannot be modified.

3.12.4.3 Number of Heads

If IDE Device Configuration is set to User Definable, you must type the correct number of heads for your hard disk. If Hard Disk Type is set to Auto Configured, this reports the number of heads for your hard disk and cannot be modified.

3.12.4.4 Number of Sectors

If IDE Device Configuration is set to User Definable, you must type the correct number of sectors for your hard disk. If Hard Disk Type is set to Auto Configured, this reports the number of sectors for your hard disk and cannot be modified.

3.12.4.5 Maximum Capacity

Reports the maximum capacity of your IDE Device. It is calculated from the number of cylinders, heads, and sectors. There are no options here.

3.12.4.6 IDE Translation Mode

Specifies the IDE translation mode. The options are Standard CHS (standard cylinder head sector -less than 1024 cylinders), Logical Block, Extended CHS (extended cylinder head sector-greater than 1024 cylinders), and Auto Detected (BIOS detects IDE drive support for LBA). The default is Auto Detected.

Do not change this from the option selected when the hard drive was formatted. Changing the option can result in corrupted data.

3.12.4.7 Multiple Sector Setting

Sets the number of sectors transferred by an IDE drive per interrupt generated. The options are Disabled, 4 Sectors/Block, 8 Sectors/Block, or Auto Detected. The default is Auto Detected. Check the specifications for your hard disk drive to determine which setting provides optimum performance for your drive.

3.12.4.8 Fast Programmed I/O Modes

Sets how fast transfers on the IDE interface occur. The options are Disabled or Auto Detected. The default is Auto Detected. If set to Disabled, transfers occur at a less than

3.12.5 **Boot Options Subscreen**

This section describes the options available on the Boot Options subscreen.

First, Second, Third, Fourth Boot Device 3.12.5.1

Sets which drives the system checks to find an operating system to boot from. The following options are available:

Select Disabled, Floppy, Hard Disk, CD-ROM, Network. First Boot Device:

Second, Third, Fourth Device: Select Disabled, Floppy, Hard Disk, Network.

3.12.5.2 System Cache

Enables or disables both the primary and the secondary cache memory. The options are Enabled or Disabled. The default is Enabled.

3.12.5.3 **Boot Speed**

Sets the system's boot speed. The options are Deturbo and Turbo. The default is Turbo. If Turbo is selected, boot-up occurs at full speed. If Deturbo is selected, the board operates at a slower speed.

3.12.5.4 Num Lock

Sets the beginning state of the Num Lock feature on your keyboard. The options are On and Off. The default is Off.

3.12.5.5 Setup Prompt

Turns on (or off) the "Press <F1> Key if you want to run Setup" prompt during the power-up sequence. The options are Enabled and Disabled. The default is Enabled.

⇒ NOTE

This option has no effect on your ability to access the Setup program. It only toggles the prompt.

3.12.5.6 Typematic Rate Programming

Sets the typematic rates. The options are Default and Override. The default is Default. Choosing Override enables Typematic Rate Delay and Typematic Rate.

3.12.5.7 Typematic Rate Delay

Sets how long it takes for the key-repeat function to start when you hold down a key on the keyboard. The options are 250, 500, 750, and 1000 millisecond delays. The default is 250. If Typematic Rate Programming is set to Default, this option will not be visible.

3.12.5.8 Typematic Rate

Sets the speed at which characters repeat when you hold down a key on the keyboard. The higher the number, the faster the characters repeat. The options are 6, 8, 10, 12, 15, 20, 24, and 30 characters per second. The default is 6. If Typematic Rate Programming is set to Default, this option will not be visible.

3.12.6 Advanced Screen

This section describes the Setup options found on the Advanced menu screen. If you select certain options from the Advanced screen (e.g., Peripheral Configuration), the Setup program switches to a subscreen for the selected option. Subscreens are described in the sections following the description of the Advanced screen options.

3.12.6.1 Processor Type

Reports the CPU type. There are no options.

3.12.6.2 Processor Speed

Reports the CPU clock speed. There are no options.

3.12.6.3 Cache Size

Reports the size of the secondary cache. There are no options. If your system contains no L2 cache, this item will not appear.

3.12.6.4 Peripheral Configuration

When selected, this brings up the Peripheral Configuration subscreen.

3.12.6.5 Advanced Chipset Configuration

When selected, this brings up the Advanced Chipset Configuration subscreen.

3.12.6.6 Power Management Configuration

When selected and enabled, this brings up the Advanced Power Management subscreen.

3.12.6.7 Plug and Play Configuration

When selected, this brings up the Plug and Play Configuration subscreen.

3.12.7 Peripheral Configuration Subscreen

This section describes the screens for the peripheral configuration subscreen.

3.12.7.1 Configuration Mode

Enables you to choose between setting the peripheral configuration yourself, or having the system do it. The options are Auto and Manual. The default is Auto.

When Auto is selected, the system peripherals are automatically configured during power up. The options below for PCI IDE Interface, Floppy Interface, Serial Port 1 and Serial Port 2 Addresses, Serial Port 2 IR Mode, and the Parallel Port Address cannot be modified. The settings displayed for those options reflect the current state of the hardware.

3.12.7.2 PCI IDE Interface

Enables or disables the PCI IDE hard disk interface. The options are Enabled and Disabled. The default is Enabled. (If Configuration Mode is set to Auto, this option cannot be modified.)

3.12.7.3 Floppy Interface

Enables or disables the diskette drive interface. The options are Enabled and Disabled. The default is Enabled. (If Configuration Mode is set to Auto, this option cannot be modified.)

3.12.7.4 Serial Port 1 Address

Selects the address of the serial port. The options are Disabled; COM1, 3F8h; COM2, 2F8h; COM3, 3E8h; and COM4, 2E8h. The default is COM1, 3F8h. If the Configuration Mode is set to Auto, the Setup program assigns the first free COM port (normally COM1, 3F8h) as the serial port 1 address, regardless of what is selected under the Serial Port 1 Address option. (If Configuration Mode is set to Auto, this option cannot be modified.)

3.12.7.5 Serial Port 2 Address

Selects the address of the serial port. The options are Disabled; COM1, 3F8h; COM2, 2F8h; COM3, 3E8h; and COM4, 2E8h. The default is COM2, 2F8h. If the Configuration Mode is set to Auto, the Setup program assigns the first free COM port (normally COM2, 2F8h) as the serial port 2 address, regardless of what is selected under the Serial Port 2 Address option. (If Configuration Mode is set to Auto, this option cannot be modified.)

⇒ NOTE

If either serial port address is set, the address it is set to will not appear in the options dialog box of the other serial port. If an ATI mach32* or an ATI mach64* video controller is active, the COM4, 2E8h address will not appear in the options dialog box of either serial port.

3.12.7.6 Serial Port 2 IR Mode

Makes Serial Port 2 available to infrared applications. The options are Enabled and Disabled. The default is Disabled. (If Configuration Mode is set to Auto, this option cannot be modified.)

3.12.7.7 Parallel Port Address

Selects the address and IRQ of the parallel port. The options are Disabled; LPT3, 3BCh, IRQ7; LPT1, 378h, IRQ7; LPT1, 378h, IRQ5; and LPT2, 278h, IRQ5. The default is LPT1, 378h, IRQ7. If the Configuration Mode is set to Auto, the setup program assigns LPT1, 378h, IRQ7 as the parallel port address, regardless of what is selected under the Parallel Port Address option. (If Configuration Mode is set to Auto, this option cannot be modified.)

3.12.7.8 Parallel Port Mode

Selects the mode for the parallel port. The options are Compatible, Bi-directional, EPP, and ECP. The default is Compatible. Compatible means the parallel port operates in AT-compatible mode. Bi-directional means the parallel port operates in bi-directional PS/2-compatible mode. EPP and ECP mean the parallel port operates high-speed, bi-directionally. This option is not affected by the Configuration Mode field above.

3.12.8 Advanced Chipset Configuration Subscreen

This section describes the options available on the Advanced Chipset Configuration Subscreen.

3.12.8.1 Base Memory Size

Sets the size of the base memory. The options are 512 KB and 640 KB. The default is 640 KB.

3.12.8.2 ISA LFB Size

Sets the size of the linear frame buffer. The options are Disabled and 1 MB. The default is Disabled. If this is set to 1 MB, then the ISA LFB Base Address field will appear.

3.12.8.3 ISA LFB Base Address

Reports the base address of the LFB. There are no options. This field will not appear if the ISA LFB Size is set to Disabled.

3.12.8.4 Video Palette Snoop

Controls the ability of a primary PCI graphics controller to share a common palette with an ISA add-in video card. The options are Enabled and Disabled. The default is Disabled.

3.12.8.5 Latency Timer (PCI Clocks)

Sets the length of time an agent on the PCI bus can hold the bus when another agent has requested the bus. Valid numbers are between 0 and 256. The default is 66.

3.12.8.6 PCI Burst

Controls the support for PCI to memory burst mode data transfers. The options are Enabled and Disabled. The default is Enabled.

3.12.9 Power Management Configuration Subscreen

This section describes the options available on the Power Management Subscreen.

3.12.9.1 Advanced Power Management

Enables or disables the Advanced Power Management (APM) support in your system's BIOS. The options are Enabled and Disabled. The default is Enabled. Power Management will only work with APM-capable operating systems to manage power consumption in your system. If Advanced Power Management is set to Disabled, none of the fields in the Advanced Power Management subscreen will be visible.

3.12.9.2 IDE Drive Power Down

Sets any IDE drives to spin down when the system goes into power managed mode. The options are Enabled and Disabled. The default is Enabled.

3.12.9.3 Inactivity Timer

Sets how long the system must be inactive before it enters power managed mode. Enter the number of minutes. The range is 0 to 255 minutes. The default is 10 minutes.

3.12.9.4 VESA Video Power Down

Sets the command issued to your graphics card when the system goes into power managed mode. The options are Disabled, Standby, Suspend, and Sleep. The default is Sleep.

3.12.9.5 Hot Key

Sets the hot key that, when pressed while holding down the <Ctrl> and <Alt> keys, causes the system to enter power managed mode. All alphabetic keys are valid.

3.12.10 Plug and Play Configuration Subscreen

This section describes the options found on the Plug and Play configuration subscreen.

3.12.10.1 Configuration Mode

Sets how the BIOS gets information about ISA cards that do not have Plug and Play capabilities. The options are Use Setup Utility and Use ICU (ISA Configuration Utility). The default is Use Setup Utility.

If Use ICU is selected, the BIOS will depend on run-time software to ensure that there are no conflicts between ISA boards with Plug and Play capabilities and those without. Only Boot With PnP OS will be visible.

3.12.10.2 Boot with PnP OS

Enables the PC to boot with an operating system capable of managing Plug and Play add-in cards. The options are None, Other, and Windows 95. The default is Windows 95.

3.12.10.3 ISA Shared Memory Size

Enables you to "unshadow" a block of the upper memory area. The options are Disabled, 16 KB, 32 KB, 48 KB, 64 KB, 80 KB, and 96 KB. The default is Disabled. If this is set to Disabled, the ISA Shared Memory Base Address (described below) will not be visible.

Shadowing is a technique that copies a block of memory from an add-in card's ROM to the same address in system memory. This provides faster access and achieves higher performance. By default, all upper memory is shadowed.

3.12.10.4 ISA Shared Memory Base Address

Sets the base address for the ISA Shared Memory. The options are C8000h, CC000h, D0000h, D4000h, D8000h, and DC000h. The default is C8000h. This setting could affect the ISA Shared Memory Size item. The value entered in the ISA Shared Memory Size item cannot extend to the E0000h address. For example, if a size of 64K was selected, options D4000h, D8000h, and DC000h will not be available.

3.12.10.5 IRQ 3, 4, 5, 7, 9, 10, 11, 12, 14, 15

Sets the status of the IRQ. The options are Available and Used By ISA Card. The default is Available. The PCI auto-configuration code looks here to see if these interrupts are available for use by a PCI add-in board. If an interrupt is available, the PCI auto-configuration code can assign the interrupt to be used by the system. If your system contains an ISA agent that uses one of these interrupts, select Used By ISA Card for that interrupt.

⇒ NOTE

IRQ 3, 4, 5, and 7 may not be available in this option, depending on the setting chosen for the COM1, COM2 and parallel ports in the Peripheral Configuration Subscreen.

IRQ 14 and 15 will not show up as user available. If the on-board IDE controller is not used, these interrupts will be available to ISA cards. These interrupts can not be used for PCI cards

3.12.11 Security Screen

This section describes the two access modes that can be set using the options found on the Security screen, and then describes the Security screen options themselves.

3.12.11.1 Administrative and User Access Modes

The options on the Security screen menu make it possible to restrict access to the Setup program by enabling you to set passwords for two different access modes: Administrative mode and User mode.

In general, Administrative mode has full access to the Setup options, whereas User mode has restricted access to the options. Thus, by setting separate Administrative and User passwords, a system administrator can limit who can change critical Setup values. The actual limitations depend on whether either the Administrative or User passwords or both are set. (See the table below for a description of how the passwords actually work together.)

To limit access to who can boot the system, set the User password. This is the password that the system asks for before booting. If only the Administrative password is set, the system boots up without asking for a password. If both passwords are set, you can enter either password to boot the system.

The following table shows the effects of setting the Administrative and User passwords. (The table is for reference only, and is not shown on the Security screen.) In the table, the statement "Can change a limited number of options" means you can change the system date and time, the power management hot key, the User password, the security hot key, and unattended start.

Password Set	Administrative mode can	User mode can	Password Required During Boot Process
Neither	Can change all options*	Can change all options*	None
Administrative only	Can change all options	Can change a limited number of options	None
User only	N/A	Can change all options	User
Both	Can change all options	Can change a limited number of options	Administrative or User

 Table 14.
 Administrative and User Password Functions

* If no password is set, any user can change all Setup options.

3.12.12 Security Screen Options

3.12.12.1 User Password is

Reports if there is a User password set. There are no options.

3.12.12.2 Administrative Password is

Reports if there is an Administrative password set. There are no options.

3.12.12.3 Set User Password

Sets the User password. The password can be up to seven alphanumeric characters.

3.12.12.4 Set Administrative Password

Sets the Administrative password. The password can be up to seven alphanumeric characters.

3.12.12.5 Unattended Start

Controls when the security password is requested. The options are Enabled and Disabled. The default is Disabled. The User password must be enabled before you can enable this option. If Enabled is selected, the system boots, but the keyboard will be locked until the User password is entered.

3.12.12.6 Security Hot Key (CTRL-ALT-)

Sets a hot key that, when pressed, locks the keyboard until the User password is entered. The Keyboard LEDs flash to indicate that the keyboard is locked. When you enter the User password, you do not have to press the <Enter> key.

3.12.13 Exit Screen

This section describes the different ways to exit and save or not save changes made in the Setup program.

3.12.13.1 Exit Saving Changes

Saves the changes to CMOS RAM and exits the Setup program. You can also press the $\langle F10 \rangle$ key anywhere in the Setup program to do this.

3.12.13.2 Exit Discarding Changes

Exits the Setup program without saving any changes. This means that any changes made while in the Setup program are discarded and NOT SAVED. Pressing the <Esc> key in any of the four main screens will do this.

3.12.13.3 Load Setup Defaults

Resets all of the setup options to their defaults. You can also press the $\langle F5 \rangle$ key anywhere in the Setup program to do this.

This selection loads the default Setup values from the ROM table.

3.12.13.4 Discard Changes

Discards any changes you made during the current Setup session without exiting the program. You can also press the $\langle F6 \rangle$ key anywhere in the Setup program to do this.

This selection loads the CMOS RAM values that were present when the system was turned on.

4.1 BIOS Beep Codes

Beeps	Error Message	Description
1	Refresh Failure	The memory refresh circuitry on the baseboard is faulty.
2	Parity Error	Parity is not supported on this product, will not occur.
3	Base 64 KB Memory Failure	Memory failure in the first 64 KB.
4	Timer Not Operational	Memory failure in the first 64 KB of memory, or Timer 1 on the baseboard is not functioning.
5	Processor Error	The CPU on the baseboard generated an error.
6	8042 - Gate A20 Failure	The keyboard controller (8042) may be bad. The BIOS cannot switch to protected mode.
7	Processor Exception Interrupt Error	The CPU generated an exception interrupt.
8	Display Memory Read/Write Error	The system video adapter is either missing or its memory is faulty. This is not a fatal error.
9	ROM Checksum Error	ROM checksum value does not match the value encoded in BIOS.
10	CMOS Shutdown Register Rd/Wrt Error	The shutdown register for CMOS RAM failed.

4.2 PCI Configuration Error Messages

The following PCI messages are displayed as a group with bus, device and function information.

Message	Explanation
Bad PnP Serial ID Checksum	The Serial ID checksum of a Plug and Play card was invalid.
Floppy Disk Controller Resource Conflict	The floppy disk controller has requested a resource that is already in use.
NVRAM Checksum Error, NVRAM Cleared	The ESCD data was reinitialized because of an NVRAM checksum error. Try rerunning the ICU.
NVRAM Cleared By Jumper	The "Clear CMOS" jumper has been moved to the "Clear" position and CMOS RAM has been cleared.
NVRAM Data Invalid, NVRAM Cleared	Invalid entry in the ESCD.
Parallel Port Resource Conflict	The parallel port has requested a resource that is already in use.
PCI Error Log is Full	This message is displayed when more than 15 PCI conflict errors are detected. No additional PCI errors can be logged.
PCI I/O Port Conflict	Two devices requested the same resource, resulting in a conflict.
PCI IRQ Conflict	Two devices requested the same resource, resulting in a conflict.

continued 🖛

Message	Explanation
PCI Memory Conflict	Two devices requested the same resource, resulting in a conflict.
Primary Boot Device Not Found	The designated primary boot device (hard disk drive, diskette drive, or CD-ROM drive) could not be found.
Primary IDE Controller Resource Conflict	The primary IDE controller has requested a resource that is already in use.
Primary Input Device Not Found	The designated primary input device (keyboard, mouse, or other, if input is redirected) could not be found.
Secondary IDE Controller Resource Conflict	The secondary IDE controller has requested a resource that is already in use.
Serial Port 1 Resource Conflict	Serial port 1 has requested a resource that is already in use.
Serial Port 2 Resource Conflict	Serial port 2 has requested a resource that is already in use.
Static Device Resource Conflict	A non Plug and Play ISA card has requested a resource that is already in use.
System Board Device Resource Conflict	A non Plug and Play ISA card has requested a resource that is already in use.

4.3 BIOS Error Messages

Error Message	Explanation
8042 Gate - A20 Error	Gate A20 on the keyboard controller (8042) is not working.
Address Line Short!	Error in the address decoding circuitry on the baseboard.
Cache Memory Bad, Do Not Enable Cache!	Cache memory is defective. Replace it.
CH-2 Timer Error	Most systems include two timers. There is an error in timer 2.
CMOS Battery State Low	CMOS RAM is powered by a battery. The battery power is low. Replace the battery.
CMOS Checksum Failure	After CMOS RAM values are saved, a checksum value is generated for error checking. The previous value is different from the current value. Run AMIBIOS Setup.
CMOS System Options Not Set	The values stored in CMOS RAM are either corrupt or nonexistent. Run Setup.
CMOS Display Type Mismatch	The video type in CMOS RAM does not match the type detected by the BIOS. Run AMIBIOS Setup.
CMOS Memory Size Mismatch	The amount of memory on the baseboard is different than the amount in CMOS RAM. Run AMIBIOS Setup.
CMOS Time and Date Not Set	Run Standard CMOS Setup to set the date and time in CMOS RAM.
Diskette Boot Failure	The boot disk in floppy drive A: is corrupt. It cannot be used to boot the system. Use another boot disk and follow the screen instructions.
Display Switch Not Proper	The display jumper is not implemented on this product, this error will not occur.
DMA Error	Error in the DMA controller.

continued 🖛

Error Message	Explanation
DMA #1 Error	Error in the first DMA channel.
DMA #2 Error	Error in the second DMA channel.
FDD Controller Failure	The BIOS cannot communicate with the floppy disk drive controller. Check all appropriate connections after the system is powered down.
HDD Controller Failure	The BIOS cannot communicate with the hard disk drive controller. Check all appropriate connections after the system is powered down.
INTR #1 Error	Interrupt channel 1 failed POST.
INTR #2 Error	Interrupt channel 2 failed POST.
Invalid Boot Diskette	The BIOS can read the disk in floppy drive A:, but cannot boot the system. Use another boot disk.
Keyboard Is LockedUnlock It	The keyboard lock on the system is engaged. The system must be unlocked to continue.
Keyboard Error	There is a timing problem with the keyboard. Set the Keyboard option in Standard CMOS Setup to Not Installed to skip the keyboard POST routines.
KB/Interface Error	There is an error in the keyboard connector.
Off Board Parity Error[DS1]	Parity error in memory installed in an expansion slot. The format is:
	OFF BOARD PARITY ERROR ADDR (HEX) = (XXXX)
	XXXX is the hex address where the error occurred.
On Board Parity Error	Parity is not supported on this product, this error will not occur.
Parity Error ????[DS2]	Parity error in system memory at an unknown address.

BIOS Error Messages (continued)

4.4 ISA NMI Messages

ISA NMI Message	Explanation
Memory Parity Error at xxxxx	Memory failed. If the memory location can be determined, it is displayed as xxxxx. If not, the message is Memory Parity Error ????.
I/O Card Parity Error at xxxxx	An expansion card failed. If the address can be determined, it is displayed as xxxxx. If not, the message is I/O Card Parity Error ????.
DMA Bus Time-out	A device has driven the bus signal for more than 7.8 microseconds.